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Lecture 2.1 (revision)

1. What is Complex Analysis?

The central objects of this course are functions f ∶ C→ C which are holomorphic at z ∈ C. This means
that the limit

limh→0
f(z + h) − f(z)

h
, h ∈ C

exists. This turns out to be a much stronger condition that asking that f be differentiable when viewed as
real function on R2 by writing any complex number as x+ iy with x, y ∈ R, and the resulting holomorphic
functions have many beautiful and surprising features. For example, later in the course we will prove:

Theorem. A holomorphic function f ∶ C → C which is zero on an open subset of C is zero on the whole
of C.

Clearly this would be false for real differentiable functions and indicates that holomorphic functions are
far more rigid.

2. Complex Numbers

2.1. Cartesian coordinates. The set of complex numbers is

C = {x + iy ∣ x, y ∈ R}

where i satisfies the relation i2 = −1.
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As an R vector space the complex numbers is isomorphic to R2. However, they have more structure.
For example, C is also a ring: if z = x + iy and w = a + ib′ then

zz′ = (x + iy)(x′ + iy′) = (xx′ − yy′) + i(xy′ + x′y)
If we express w as a row vector (a, b) then the above multiplication by z corresponds to the linear map

(2.1) (a, b) ↦ (a, b)( x y
−y x

) = (xa − yb, ay + bx)

If z = x + iy then we say Re(z) = x is the real part of z and Im(z) = y is the imaginary part of z. If
z = x + iy then the complex conjugate z of z is defined by

z = x − iy

2.2. Polar coordinates. Using basic trigonometry we can also write any complex number z = x+ iy ∈ C
as

z = ∣z∣(cos θ + i sin θ)
where ∣z∣ =

√
x2 + y2 and θ is the argument arg(z):

Using Eulers theorem gives: for every θ ∈ R one has

eiθ = cos θ + i sin θ
Therefore, every complex number can be written as

z = ∣z∣eiarg(z)

This shows that, in terms of polar coordinates, multiplication is given by

zz′ = ∣z∣∣z′∣ei(arg(z)+arg(z
′))
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In other words, multiplication by z identifies with rotation by arg(z) composed with a dilation by ∣z∣.

2.3. Metric structure. Using Cartesian coordinates to identify C = {x + iy ∣ x, y ∈ R} ≅ R2 we can
transfer the usual metric on R2 to C. In other words, the distance between two complex numbers z,w is

d(z,w) = ∣z −w∣
This gives the notion of open and closed disks of radius r > 0 centred around z ∈ C:

Dr(z) = {w ∈ C ∣ ∣w − z∣ < r}
and

Dr(z) = {w ∈ C ∣ ∣w − z∣ ≤ r}
The Dr(z) form a basis of the topology on C induced by this metric. Therefore

● A subset U ⊂ C is open if for any z ∈ U there exists an r > 0 such that Dr(z) ⊂ U .
● A subset V ⊂ C is closed if C ∖ V is open.

In particular, a subset V ⊂ C is closed if the limit of every convergent sequence in V is contained in V .

2.4. Convergence properties. Recall the notion of convergent and Cauchy sequences

Definition 2.2. ● A sequence zn ∈ C converges to z ∈ C if ∣zn − z∣ → 0 as n→∞.
● A sequence zn ∈ C is Cauchy if for every ϵ > 0 there exists an N > 0 such that ∣zn − zm∣ < ϵ for all
n,m > N .

Theorem 2.3. C is a complete metric space (i.e. every Cauchy sequence is convergent)

Proof. Suppose zn ∈ C is a Cauchy sequence. Then Re(zn) and Im(zn) are Cauchy sequences in R because
the triangle inequality implies

∣Re(zn) −Re(zm)∣ ≤ ∣zn − zm∣
and likewise for the imaginary part. Since R is a complete metric space both sequences Re(zn) and Im(zn)
converge to limits x and hy in R. If z = x + iy then

∣zn − z∣ ≤ ∣Re(zn) − x∣ + ∣ Im(zn) − y∣
(again by the triangle inequality) converges to zero n→ 0. □

Definition 2.4. If zn ∈ C is a sequence then the series ∑∞n=0 zn converges if the sequence of partial sums

Sm =
m

∑
n=0

zn

is convergent in C. The series ∑∞n=0 zn is absolutely convergent if ∑∞n=0 ∣zn∣ is convergent in R.

Corollary 2.5. Any absolutely convergent series is convergent.

Proof. Any absolutely convergent series is Cauchy and therefore converges by Theorem 2.3. □

Example 2.6. ● For z ∈ C define

ez =
∞
∑
n=0

zn

n!

For z ∈ R this definition coincides with the usual exponential function. Since ∣ znn! ∣ =
∣z∣n
n! the absolute

converges of the exponential on R implies absolute convergence on C and hence ez converges on
C.
● For z ∈ C define

cos(z) =
∞
∑
n=0
(−1)n z2n

(2n)!
, sin(z) =

∞
∑
n=0
(−1)n z2n+1

(2n + 1)!
The same argument as for ez shows there series converge absolutely and so converge. From this
one deduces Euler’s formulas:

cos(z) = e
iz + e−iz

2
, sin(z) = e

iz − e−iz

2
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Lecture 2.2

3. Complex differentiability

Here we define the key concept in this course:

Definition 3.1. Let U ⊂ C be an open set and let f ∶ U → C be a function. Then f is holomorphic
(alternatively, complex differentiable) at z0 ∈ U if

limz→z0
f(z) − f(z0)

z − z0
, z ∈ U

exists. In this case the limit is denoted f ′(z) and called the derivative of f at z0.

Definition 3.2. Let U ⊂ C be an open set. Then a function f ∶ U → C is holomorphic on U if it is
holomorphic at every point z0 ∈ U .

Example 3.3. ● The constant function is holomorphic on C.
● The identity function f(z) = z is holomorphic on C with derivative the constant function 1.
● Complex conjugation f(z) = z is not complex differentiable at any point z0 ∈ C. Indeed

f(z) − f(z0)
z − z0

= h
h
, h = z − z0

However, the limit of hh does not exist at h → 0 because if h converges to zero along the real axis

then h
h = 1 but if h converges to zero along the imaginary axis then h

h = −1.
The next lemma confirms that complex differentiation satisfies all the usual basic properties that are

familiar from differentiation of real functions in one variable.

Lemma 3.4. Let f and g be holomorphic functions on an open subset U ⊂ C. Then complex differentiation
satisfies the following:

(1) Linearity: f + g is holomorphic on U and (f + g)′ = f ′ + g′.
(2) Product rule: fg is holomorphic on U and (fg)′ = fg′ + f ′g.
(3) Quotient rule: f(z0) ≠ 0 for z0 ∈ U then 1/f is holomorphic at z0 and ( 1f )

′(z0) = g′(z0)
g(z0)2 .

(4) Chain rule: f ∶ U1 → U2 and g ∶ U2 → U3 then g ○ f is holomorphic on U1 and

(g ○ f)′(z) = (g′ ○ f(z)) f ′(z)
for z ∈ U1.

Proof. One argues exactly as in the case of functions of one real variable. □

Corollary 3.5. If p, q ∈ C[X] are complex polynomials then f(z) = p(z)
q(z) is complex differentiable at any

z0 ∈ C with q(z0) ≠ 0

4. Recalling real differentiability

Here we begin to explore the difference between complex differentiation of f ∶ C→ C and real differen-
tiability of the function F ∶ R2 → R2 given by

F (x, y) = (Re f(x + iy), Im f(x + iy))
Definition 4.1. Let F = (F1, . . . , Fm) ∶ Rn → Rm be a function. Then F is real differentiable at x ∈ Rn if
there exists a linear map

L ∶ Rn → Rm

such that
∣∣F (x + h) − F (x) −L(h)∣∣

∣∣h∣∣
→ 0‘

as h → 0 in Rn. If such L exists then all the partial derivatives ∂Fi

∂xj
exist and L is given by the Jacobian

of F

L(x1, . . . , xn) = (x1, . . . , xn)
⎛
⎜⎜
⎝

∂F1

∂x1
. . . ∂Fm

∂x1
⋮ ⋮

∂F1

∂xn
. . . ∂Fm

∂xn

⎞
⎟⎟
⎠
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One obvious difference between complex differentiability is that the complex derivative is a complex
number while the real derivative is a matrix. However, we have seen in (2.1) that only specific linear
transformations of R2 correspond to multiplication by a complex number, namely those of the form

(X Y
−Y X

). We will see shortly that complex differentiable functions are those whose real derivative

identifies with multiplication by a complex number.

Example 4.2. We have already seen the function f(z) = z is not complex differentiable anywhere.
However, as a function F ∶ R2 → R2 it is given by

(x, y) ↦ (x,−y)

which, being linear, is real differentiable with derivative (1 0
0 −1). Since 1 ≠ −1 this linear transformation

does not identify with multiplication by any complex number.

5. The Cauchy–Riemann equations

Here we make the observations from the previous section precise.

Proposition 5.1. Let U ⊂ C be an open set and f ∶ U → C holomorphic at z ∈ U . Then f is real
differentiable at z and its partial derivatives satisfy the Cauchy–Riemann equations

(5.2)
∂u

∂x
(z) = ∂v

∂y
(z), ∂u

∂y
(x) = −∂v

∂x
(z)

where u = Re(f) and v = Im(f). Moreover

f ′(z) = ∂u
∂x
(z) + i ∂v

∂x
(z)

In other words, f is holomorphic if it is real differentiable and its real derivative (
∂u
∂x

∂v
∂x

∂u
∂y

∂v
∂y

) identifies

with multiplication by a complex number.

Proof. For x, y ∈ R write F (x, y) = (u(x, y), v(x, y)) and write f ′(z) = a+ ib. As f is holomorphic we know

limh→0
f(z + h) − f(z) − f ′(z)h

h
→ 0

This implies

limh→0
∣∣F (z + h) − F (z) − f ′(z)h∣∣

∣∣h∣∣
→ 0

and so to show F is real differentiable we only need to observe that L(h) ∶= f ′(z)h defines a linear map

R2 → R2. But we saw that that was the case in (2.1) and that the matrix of this linear map is ( a b
−b a

).

We conclude that L(h) is the derivative of F and so, since this derivative is given by the Jacobian of F ,
we have

(
∂u
∂x(x0, y0)

∂v
∂x(x0, y0)

∂u
∂y (x0, y0)

∂v
∂y (x0, y0)

) = ( a b
−b a

)

□
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Lecture 3.1

6. Cauchy Riemann equations

Recall that if f ∶ C→ C has real part u and imaginary part v then the partial derivatives ∂u
∂x ,

∂u
∂y ,

∂v
∂x ,

∂v
∂y

are, if they exist, defined as the limits

∂u

∂x
(z) = limh→0

h∈R

u(z + h) − u(z)
h

∂v

∂y
(z) = limh→0

h∈R

u(z + ih) − u(z)
h

and likewise with v replaced by u.

Theorem 6.1. Let U ⊂ C be an open subset and f ∶ U → C a function. Set u = Re(f) and v = Im(f).
Suppose that

(1) the first partial derivatives of u and v exist on U ,
(2) are continuous on U ,
(3) and satisfy the Cauchy–Riemann equations

∂u

∂x
(z) = ∂v

∂y
(z), ∂u

∂y
(z) = −∂v

∂x
(z)

at z ∈ U .

Then f is complex differentiable at z ∈ U and

f ′(z) = ∂u
∂x
(z) + i ∂v

∂x
(z)

Remark 6.2. Later we will prove a converse to Theorem 6.1. More precisely, we will show that if
f is holomorphic in an open neighbourhood of z ∈ U then conditions (1)-(3) hold. We have already
seen f holomorphic implies (2) and (3) in Proposition 5.1. What is more difficult is to show that if
f is holomorphic in a neighbourhood of U then the partial derivatives of u and v are continuous in a
neighbourhood of U .

The following example shows why it is not enough that f satisfy the Cauchy–Riemann equations at
z ∈ U in order to deduce complex differentiability (the continuity of the partial derivatives of u and v is
also important).

Example 6.3. Consider f ∶ C→ C defined by

f(z) =
⎧⎪⎪⎨⎪⎪⎩

z5

∣z∣4 if z ≠ 0
0 if z = 0

Then f satisfies the Cauchy–Riemann equations at z = 0 because

limh→0
h∈R

f(h)
h
= h

5

h5
= 1

while

limh→0
h∈R

f(ih)
h
= i

5(h)4

∣h∣4
= i

If f(z) = u(z)+ iv(z) then ∂u
∂x is the real part of the first limit and ∂v

∂y is the imaginary part of the second.

Thus
∂u

∂x
(0) = 1 = ∂v

∂y
(0)

and similarly ∂v
∂x(0) = 0 = −

∂u
∂y (0). However, f is not complex differentiable at z = 0. If it was complex

differentiable then Proposition 5.1 would imply

f ′(0) = 1
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However, we can write
f(z)
z =

z2

z2
and so

f(h(i + 1))
h(i + 1)

= (1 + i)
2

(1 − i)2

for h ∈ R. Therefore limh(i+1)→0
h∈R

f(h(i+1))−f(0)
h(i+1) = (i+1)

2

(1−i)2 ≠ 1. The reason that Theorem 6.1 does not apply

here is because the partial derivatives of u and v are not continuous at 0. To see this use the binomial
expansion to write (x + iy)5 = x5 + 5ix4y − 10x3y2 − 10ix2y3 + 5xy4 + iy5. Then

u(x + iy) =
⎧⎪⎪⎨⎪⎪⎩

x5−10x3y2+5xy4
(x2+y2)2 (x, y) ≠ (0,0)

0 (x, y) = (0,0)

and (using the quotient rule) we compute

∂u

∂x
(x, y) =

⎧⎪⎪⎨⎪⎪⎩

5x4−30x2y2+5y4
(x2+y2)2 − (x

5−10x3y2+5xy4)4x(x2+y2)
(x2+y2)2 (x, y) ≠ (0,0)

1 (x, y) = (0,0)

However, this function is not continuous at (0,0) because ∂u
∂x(0, y) = 5 and so 5 = limy→0

∂u
∂x(0, y) ≠

∂u
∂x(0,0).

The assumption that the partial derivatives of f are continuous are required to apply the lemma:

Lemma 6.4. Let U ⊂ Rn be open and ϕ ∶ U → Rm a function with continuous partial derivatives. Then
ϕ is real differentiable.

Proof. First assume m = 1 and, for any vector h = (h1, . . . , hn) ∈ Rn write αi(h) = (h1, . . . , hi,0, . . . ,0).
Also write Diϕ = ∂ϕ

∂xi
.

Let a ∈ U and set L = (D1ϕ(a), . . . ,Dnϕ(a)). Continuity of Diϕ around a ensures that for each ϵ > 0
there exists δ > 0 such that

∣Diϕ(xi) −Diϕ(a)∣ ≤ ϵ
whenever ∣∣xi − a∣∣ ≤ δ. The triangle inequality gives

∣ϕ(a + h) − ϕ(a) − hLt∣ = ∣
n

∑
i=1
(ϕ(a + αi(h)) − ϕ(a + αi−1(h)) −Diϕ(a)hi) ∣

≤
n

∑
i=1
∣ϕ(a + αi(h)) − ϕ(a + αi−1(h)) −Diϕ(a)hi∣

where we write Lt for the column vector obtained by transposing the row vector L. The mean value
theorem asserts the existence of xi on the line segment between a + αi(h) and a + αi−1(h) so that

ϕ(a + αi(h)) − ϕ(a + αi−1(h)) =Diϕ(xi)hi
If h is sufficiently small then we must have ∣∣xi − a∣∣ ≤ δ and so

∣ϕ(a + h) − ϕ(a) − hLt∣ ≤
n

∑
i=1
∣Diϕ(xi)hi −Diϕ(a)hi∣

=
n

∑
i=1
∣Diϕ(xi) −Diϕ(a)∣∣hk∣

≤ ϵnmax ∣hi∣

This proves that ϕ is real differentiable with derivative Lt. The case m > 1 follows easily from the case
m = 1. □

Proof that conditions (1)-(3) in Theorem 6.1 imply holomorphy. Set F (x, y) = (u(x + iy), v(x + iy)) and
suppose z ∈ U . Lemma 6.4 implies that F is real differentiable at z and so

limh→0
∣∣F (z + h) − F (z) −L(h)∣∣

∣∣h∣∣
→ 0
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for L(x, y) = (x, y)(
∂u
∂x(z)

∂v
∂x(z)

∂u
∂y (z)

∂v
∂y (z)

). Since u and v satisfy the Cauchy–Riemann equations it follows from

(2.1) that

(∂u
∂x
(z) + i∂v

∂y
(z))(w0 + iw1) = L(w0,w1)

Therefore

limh→0

f(z + h) − f(z) − (∂u∂x(z) + i
∂v
∂y (z))h

h
→ 0

In other words, f is complex differentiable at z with derivative f ′(z) = (∂u∂x(z) + i
∂v
∂y (z)). □
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Lecture 3.2

7. Power series

Definition 7.1. A power series over C is a series of the form ∑∞n=0 anzn with an ∈ C.
Such power series are a large source of holomophic functions, at least on regions where they converge.

Example 7.2. The series ∑∞n=0 zn has sequence of partial sums converging to 1
1−z whenever z ∈ C with

∣z∣ < 1. Indeed 1 + z + . . . + zn−1 = 1−zn
1−z . Since zn → 0 as n → ∞ whenever ∣z∣ < 1 it follows that

1 + z + . . . + zn−1 → 1
1−z as n→∞ whenever ∣z∣ < 1.

Theorem 7.3. For any power series ∑∞n=0 anzn there exists 0 ≤ R ≤ ∞ such that

(1) If ∣z∣ < R then the series converges absolutely.
(2) If ∣z∣ > R the series diverges.

Morevoer, if we use the convention that 1/0 = ∞ and 1/∞ = 0 then

1

R
= lim sup ∣an∣1/n

Proof. We refer to Theorem 2.5 and its proof from Lectures in analysis, Volume II, Complex Analysis by
Stein and Shakarchi. □

Remark 7.4. Notice that this theorem does not give information about the convergence or divergence
of the series on the boundary DR(0) −DR(0) = {z ∈ C ∣ ∣z∣ = R}. In fact, it is possible that the series is
divergent on the whole boundary, is convergent on the whole boundary, or is only convergent on part of
the boundary.

Theorem 7.5. Any power series ∑∞n=0 anzn defines a holomorphic function f(z) = ∑∞n=0 anzn on DR(0)
where R denotes the radius of convergence. The power series

∞
∑
n=0

nanz
n−1

has radius of convergence R and f ′(z) = ∑∞n=0 nanzn−1 for any z ∈DR(0).
Proof. Since limn→∞ n

1/n = 1 we have

lim sup ∣an∣1/n = lim sup ∣nan∣1/n = lim sup ∣nan∣1/(n+1)

Therefore Theorem 7.3 shows that g(z) = ∑∞n=0 nanzn−1 and f(z) have the same radius of convergence.
To prove that g(z) is the complex derivative of f(z) at z ∈DR(0) choose ∣z∣ < r < R. We have to show

f(z + h) − f(z)
h

− g(z) → 0

as h→ 0. For this we are going to use the bound:

Claim. Let n, δ > 0 and suppose h, z ∈ C with ∣h∣ < δ. Then

∣(z + h)n − zn − hzn−1∣ ≤ ∣h
δ
∣
2

(∣z∣ + δ)n

Proof of Claim. Using the binomial formula we have

(z + h)n − zn − hnzn−1 = h2
n

∑
k=2

zn−khk−2(n
k
)

Therefore, the triangle inequality gives

∣(z + h)n − zn − hzn−1∣ ≤
n

∑
k=2
∣z∣n−kδk(n

k
) ∣h
δ
∣
2

≤ (
n

∑
k=0
∣z∣n−kδk(n

k
)) ∣h

δ
∣
2

= (∣z∣ + δ)n ∣h
δ
∣
2

□
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Now return to the proof of the theorem. The claim gives, for any δ > 0 with ∣h∣ < δ,

∣f(z + h) − f(z)
h

− g(z)∣ ≤ ∣1
h

∞
∑
n=1
(an((z + h)n − zn − hnzn−1))∣

≤ 1

∣h∣

∞
∑
n=1
∣an∣ ∣

h

δ
∣
2

(∣z∣ + δ)n

= ∣h∣
δ2

∞
∑
n=1
∣an∣(∣z∣ + δ)n

Now choose δ1 so that ∣z∣ +δ1 < R for R the radius of convergence of f . Then ∑∞n=1 ∣an∣(∣z∣ +δ1)n converges
to a real number C > 0. Therefore, for any ϵ > 0 we have

∣f(z + h) − f(z)
h

− g(z)∣ ≤ ∣h∣C
δ21
≤ ϵ

whenever ∣h∣ <min(δ1, ϵ
δ21
C ). In other words,

f(z+h)−f(z)
h − g(z) → 0 as h→ 0 as desired.

□

Corollary 7.6. A power series is infinitely complex differentiable on its disk of convergence and the
derivatives are computed by termwise differentiation.

8. Analytic functions

More generally one can consider power series of the form ∑∞n=0 an(z − z0)n for z0 ∈ C. Such a series is
said to be centred around z0 ∈ C and Theorem 7.3 and Theorem 7.5 also applies to these more general
series. This can be deduced easily by observing that f(z) = ∑∞n=0 an(z − z0)n can be written as f1 ○ g with
g(z) = z − z0 and f1(z) = ∑∞n=0 anzn. In particular, the chain rule shows that

f ′(z) = f ′1(z − z0)

Definition 8.1. Let U ⊂ C be an open set and f ∶ U → C a function. Then f is analytic at z0 ∈ U if there
exists a power series ∑∞n=0 an(z − z0)n with positive radius of convergence such that

f(z) =
∞
∑
n=0

an(z − z0)n

in an open neighbourhood of z0 in U .
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Lecture 4.1

9. Integration along curves

Definition 9.1. ● A parametrised curve is a map z ∶ [a, b] → C where [a, b] = {x ∈ R ∣ a ≤ x ≤ b} is
the closed interval. We say that z is smooth if it is differentiable and has continuous derivative
z′(t). Note that for t = a (respectively, t = b) the complex numbers z′(t) are interpreted as the
left-handed (respectively right handed) limits

limh→0,h>0
z(x + h) − z(x)

h
, ( resp. limh→0,h<0

z(x + h) − z(x)
h

)

A parametrised curve is piecewise smooth if there are a = a0 < a1 < . . . < an = b so that z(t) is
smooth when restricted to each [ai−1, ai].
● Two parametrised curves z1(t) ∶ [a1, b1] → C and z2(t) ∶ [a2, b2] → C are equivalent if there exists
a continuously differentiable bijection t ∶ [a1, b1] → [a2, b2] so that

z1 = z2 ○ t
and t′(s) > 0. This last condition ensures that the curve is traced in the same direction by z1 and
z2. In particular, z1(a1) = z2(a2) and z1(b1) = z2(b2).
● The end points of a parametrised curve z ∶ [a, b] → C are f(a) and f(b) and a curve is called
closed if f(a) = f(b).
● A parametrised curve z ∶ [a, b] → C is called simple (or non-intersecting) if t ≠ t′ then z(t) = z(t′)
if and only if t = a and t′ = b (or t = b and t′ = a).

For brevity we will usually refer to a smooth or piece-wise smooth parametrised curve simply as a
curve.

Definition 9.2. If γ ∶ [a, b] → C is a smooth curve and f is a continuous function on γ (i.e. on the image
of γ) then we define

∫
γ
f(z)dz ∶= ∫

b

a
f(γ(t))γ′(t)dt ∶= ∫

b

a
Re f(γ(t))γ′(t)dt + i∫

b

a
Im f(γ(t))γ′(t)dt

If γ is instead a piecewise smooth curve then we define

∫
γ
f(z)dz =

n

∑
i=1
∫

ai

ai−1
f(γ(t))γ′(t)dt

for any sequence a = a0 < a1 < . . . < an = b for which γ is smooth on each [ai−1, ai]. Note that ∫γ f(z)dz is
independent of the choice of a = a0 < a1 < . . . < an = b.

Lemma 9.3. If γ0 ∶ [a0, b0] → C is a reparametrisation of γ, i.e. if γ = γ0 ○ t for a differentiable bijection
t ∶ [a, b] → [a0, b0], then

∫
γ
f(z)dz = ∫

γ0
f(z)dz

Proof. Using substitution for real integrals gives

∫
γ0
f(z)dz = ∫

b0

a0
Re f(γ0(t))γ′0(t)dt + i∫

b0

a0
Im f(γ0(t))γ′0(t)dt

= ∫
b

a
Re f(γ0(t(s)))γ′0(t(s))t′(s)ds + i∫

b

a
Im f(γ0(t(s)))γ′0(t(s))t′(s)dt

Here we use that t has positive orientation, i.e. that t(a0) = a and t(b0) = b. The chain rule says
γ′(s) = γ′0(t(s))t′(s) and so

∫
γ
f(z)dz = ∫

b

a
Re f(γ(s))γ′(s)ds + i∫

b

a
Im f(γ(s))γ′(s)ds

which equals ∫γ f(z)dz. □

Definition 9.4. For a piecewise smooth curve γ ∶ [a, b] → C set

length(γ) = ∫
a

b
∣γ′(t)∣dt
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Proposition 9.5. Integration of continuous functions along any piece-wise smooth curve γ in C satisfies:

(1) Linearity, i.e. ∫γ(αf(z) + βg(z))dz = α ∫γ f(z)dz + β ∫γ g(z)dz.
(2) Orientability, i.e. if γ− is the reverse parametrisation γ−(z) = γ(a + b − z) then

∫
γ
f(z)dz = −∫

γ−
f(z)dz

(3)

∣ ∫
γ
f(z)dz∣ ≤ supz∈γ ∣f(z)∣ length(γ)

Proof. (1) follows from linearity of the usual Riemann integral and (2) follows from the change of variables
formula, noting that, unlike in Lemma 9.3, the orientation of γ and γ− are opposite. For (3) write

∫γ f(z)dz = re
iθ. Then

∣ ∫
γ
f(z)dz∣ = ∣ ∫

b

a
f(γ(t))γ′(t)dt∣ = r = e−iθ ∫

b

a
f(γ(t))γ′(t)dt = ∫

b

a
e−iθf(γ(t))γ′(t)dt

Since ∫
b
a e
−iθf(γ(t))γ′(t)t = ∫

b
a Re (e−iθf(γ(t))γ′(t))dt + i ∫

b
a Im (e−iθf(γ(t)))γ′(t))dt is real, it follows

that ∫
b
a Im (e−iθf(γ(t))γ′(t))dt = 0. Since Re (e−iθf(γ(t))γ′(t)) ≤ ∣e−iθf(γ(t))γ′(t)∣ known properties of

the real integral imply

∣ ∫
γ
f(z)dz∣ = ∫

b

a
Re (e−iθf(γ(t))γ′(t))dt ≤ ∫

b

a
∣e−iθf(γ(t))γ′(t)∣dt = ∫

b

a
∣f(γ(t))∣∣γ′(t)∣dt

≤ supt∈[a,b] ∣f(γ(t))∣ ∫
a

b
∣γ′(t)∣dt

= supz∈γ ∣f(z)∣ length(γ)
□

Example 9.6. Let γ ∶ [0,2π] → C be the circle γ(t) = reit of radius r > 0 and consider the integral

I = ∫
γ
zndz

By definition, I = ∫
2π
0 γ(t)nγ′(t)dt. Since the derivative of ez is ez we have γ′(t) = ireit. Using that

ex = cos(x) + i sin(x) we find

I = ∫
2π

0
(rnenit) (ireit)dt = irn+1∫

2π

0
ei(n+1)tdt

= irn+1 (∫
2π

0
cos ((n + 1)t)dt + i∫

2π

0
sin ((n + 1)t)dt)

= irn+1
⎧⎪⎪⎨⎪⎪⎩

∫
2π
0 1dt + i ∫

2π
0 0dt if n = −1

[ sin((n+1)t)n+1 ]
2π

0
+ i [− cos((n+1)t)n+1 ]

2π

0
if n ≠ −1

=
⎧⎪⎪⎨⎪⎪⎩

2πirn+1 if n = −1
0 if n ≠ −1
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Lecture 4.2

10. Primitives

Just as with real integration it is easy to compute the integral of a complex function along a curve if
one can find a primitive of that function:

Definition 10.1. Let U ⊂ C be open and f ∶ U → C a function. Then F ∶ U → C is a primitive of f on U
if it is holomorphic on U and satisfies

F ′(z) = f(z), z ∈ U

Example 10.2. Any polynomial function f(z) = a0 + a1z + . . . + anzn admits a primitive F (z) = a0z +
a1
2 z

2 + . . . + an
n z

n+1.

We then have the following complex version of the fundamental theorem of calculus.

Theorem 10.3. Suppose U ⊂ C is open and F ∶ U → C is a primative of f ∶ U → C. Then

∫
γ
f(z)dz = F (γ(b)) − F (γ(a))

for any piece-wise smooth curve γ ∶ [a, b] → C.

Proof. If γ is smooth then

∫
γ
f(z)dz = ∫

b

a
f(γ(t))γ′(t)dt

= ∫
b

a

d

dt
F (γ(t))dt

= ∫
b

a

d

dt
Re (F (γ(t)))dt + i∫

a

b

d

dt
Im (F (γ(t)))dt

= Re (F (γ(b)) − F (γ(a))) + i Im (F (γ(b)) − F (γ(a)))
= F (γ(b)) − F (γ(a))

where the second equality follows from the chain rule d
dtF (γ(t)) = f(γ(t))γ

′(t) and the fourth equality
follow from the fundamental theorem of calculus for real valued functions.

If instead γ is only piece-wise smooth then write [a, b] = ⋃ni=0[ai, ai+1] so that the restrictions γi ∶
[ai, ai+1] → C are smooth. Then

∫
γ
f(z)dz =

n

∑
i=0
∫
γn
f(z)dz =

n

∑
i=0
(F (γ(ai+1)) − F (γ(ai))) = F (γ(b)) − F (γ(a))

where the second equality follows from the theorem for smooth γ proved above. □

Corollary 10.4. If f ∶ U → C admits a primitive on the whole of U then

∫
γ
f(z)dz = 0

for any piece-wise smooth closed curve γ ∶ [a, b] → C.

Proof. Since γ is closed one has γ(a) = γ(b). Thus, if F is the primitive of f then ∫γ f(z)dz = F (γ(b)) −
F (γ(a)) = 0. □

Example 10.5. The function f(z) = zn has a primitive F (z) = zn+1
n+1 on C when n ≠ −1. Therefore

∫
γ
zndz = 0

for any closed curve in C. In particular, this recovers our calculation from Example 9.6.
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11. Goursat’s Theorem

We saw last time that if γ is a closed curve in an open set U ⊂ C on which a function f has a primitive
then ∫γ f(z)dz = 0.

Theorem 11.1 (Goursat’s Theorem). Let U ⊂ C be an open set and T ⊂ U any Euclidean triangle whose
interior is contained in U . Then

∫
T
f(z)dz = 0

for any f ∶ U → C which is holomorphic on U .

The rough idea of the proof is that, since f is holomorphic, it can be approximated by the linear
function z ↦ f(w) + f ′(w)(z − w) in a small neighbourhood of w ∈ U . The theorem is true for linear
functions (because linear functions admit primatives) and the argument proceeds by bounding ∫T f(z)dz
in terms of ∫T ′ f(z)dz for a triangle T ′ in the interior of T which is sufficiently small that in the interior
of T ′ the approximation of f(z) by f(w) + f ′(w)(z − w) (for some w in the interior of T ′) is a good
approximation.

Proof. It suffices to show that ∣ ∫T f(z)dz∣ ≤ ϵ for any ϵ > 0. We do this by subdividing the triangle. Let

T (0) denote the original triangle and define four new triangles T
(1)
1 , T

(1)
2 , T

(1)
3 and T

(1)
4 by drawing the

four triangles between the vertices of T (0) and the the 3 midpoints of the edges of T (0).

With this construction the perimeter p
(1)
j of each T

(1)
j is 2−1p(0) and similarly the diameters (i.e. supx,y ∣x−

y∣ for all x, y on T and its interior) satisfy d
(1)
j = 2−1d(0). We can choose an orientation of each T

(i)
j so

that

∫
T (0)

f(z)dz = ∫
T
(1)
1

f(z)dz + ∫
T
(1)
2

f(z)dz + ∫
T
(1)
3

f(z)dz + ∫
T
(1)
4

f(z)dz

We can therefore find j ∈ {1,2,3,4} with

∣ ∫
T (0)

f(z)dz∣ ≤ 4∣ ∫
T
(1)
j

f(z)dz∣

Set T
(1)
j = T (1). Repeating this process with T 0 replaced by T (1) we obtain T (2) = T (2)j with

∣ ∫
T (0)

f(z)dz∣ ≤ 4∣ ∫
T
(1)
j

f(z)dz∣ ≤ 42∣ ∫
T (2)

f(z)dz∣

Doing this repeatedly we obtain, by induction, triangles T (n) for n ≥ 0 such that

∣ ∫
T (0)

f(z)dz∣ ≤ 4n∣ ∫
T (n)

f(z)dz∣

Moreover, if p(n) and d(n) denotes respectively the perimeter and diameter of T (n) then we also know

p(n) = 2−np(0), d(n) = 2−nd(0)

Let T(n) be the union of T (n) together with its interior. Then T(n) is a closed and bounded subset of C
and so is compact. This implies that

∞
⋂
n=0

T(n) ≠ ∅

so we can choose w ∈ U so that w ∈ T(n) for each n ≥ 0. Write

f(z) = f(w) + f ′(w)(z −w) + ϕ(z)(z −w)
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for a function ϕ ∶ U → C with ϕ(z) → 0 as z → w (by definition of the derivative of f at w). Then

∫
T (n)

f(z)dz = ∫
T (n)
(f(w) + f ′(w)(z −w))dz + ∫

T (n)
ϕ(z)(z −w)dz

= ∫
T (n)

ϕ(z)(z −w)dz

because the function z ↦ f(w) + f ′(w)(z − w) is polynomial in z and hence has a primitive. Since z in

this integral lies on T (n) and w ∈ T(n) it follows that

∣z −w∣ ≤ d(n)

Therefore, part (3) of Proposition 9.5 implies

∣ ∫
T (n)

f(z)dz∣ = ∣ ∫
T (n)

ϕ(z)(z −w)dz∣ ≤ Cnd(n)p(n)

where Cn = supz∈T (n) ∣ϕ(z)∣. Here we use that p(n) is the length of T (n). We conclude that

∣ ∫
T
f(z)dz∣ ≤ 4n∣ ∫

T (n)
f(z)dz∣ ≤ Cn4nd(n)p(n) = Cn4n(2−nd(0))(2−np(0)) = Cnp(0)d(0)

Now, because ϕ(z) → 0 as z → w there exists δ > 0 so that ∣z − w∣ ≤ δ implies ∣ϕ(z)∣ ≤ ϵ
p(0)d(0) . On the

other hand, for sufficiently large n, we will have ∣z − w∣ ≤ δ for all z ∈ T (n). Therefore, Cn ≤ ϵ
p(0)d(0) for

sufficiently large n and so ∣ ∫T f(z)dz∣ < ϵ. □

For applications it is also useful to having the following slight generalisation of Goursat’s Theorem:

Theorem 11.2. Let U ⊂ C be open and let p ∈ U . Suppose that f ∶ U ∖ {p} → C is holomorphic and
bounded on an open set in U around p. Then for any triangle T ⊂ U whose interior is also contained in
U one has

∫
T
f(z)dz = 0

Proof. Let T be the union of T and its interior. There are four possible cases:

Case 1. If p /∈ T then the theorem follows by applying Goursat’s theorem to U ∖ {p}.

Case 2. If p lies on a vertex of T then we can subdivide T as follows:

Then

∫
T
f(z)dz = ∫

T1
f(z)dz + ∫

T2
f(z)dz + ∫

T3
f(z)dz

= ∫
T1
f(z)dz ≤ supz∈T1 ∣f(z)∣ ∫

T1
1dz

where the second equality uses Goursat’s theorem to show ∫T2 f(z)dz = ∫T3 f(z)dz = 0. Since ∫T1 1dz → 0

as the size of T1 goes to zero and supz∈T1 ∣f(z)∣ is bounded by assumption, we conclude ∫T f(z)dz = 0.
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Case 3. If p lies on a side of T then we instead subdivide T as follows:

Then

∫
T
f(z)dz = ∫

T1
f(z)dz + ∫

T2
f(z)dz

and both ∫T1 f(z)dz = ∫T2 f(z)dz = 0 by Case 2.

11.1. Case 4. If p lies in the interior of T then we can subdivide T as follows:

Then

∫
T
f(z)dz = ∫

T1
f(z)dz + ∫

T2
f(z)dz + ∫

T3
f(z)dz

and ∫T1 f(z)dz = ∫T2 f(z)dz = ∫T3 f(z)dz = 0 by case 2. □
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Lecture 5.1

12. A Local Cauchy’s Theorem

Definition 12.1. A subset U ⊂ C is convex if and only if for any two points x, y ∈ U the straight line
segment between x and y is contained in U .

Example 12.2. Any open or closed ball is convex.

Theorem 12.3. Any holomorphic function f ∶ U → C on a convex open set U ⊂ C has a primitive.

Proof. Fix z0 ∈ U and, for any z ∈ U , let γ(z0, z) ∶ [0,1] → C denote the straight line segment between z0
and z. In other words,

γ(z0, z)(t) = (1 − t)z0 + tz
Since U is convex we have γ(z0, z)([0,1]) ⊂ U . Define

F (z) = ∫
γ(z0,z)

f(w)dw

for all z ∈ U . We want to show that

f(z) = F ′(z) ∶= lim
z1→0

F (z1) − F (z)
z1 − z

for all z ∈ U . To do this take z1 ∈ U with z1 ≠ z. Since U is convex the triangle T between z0, z1 and z is
contained in U . Therefore, Theorem 11.1 (Goursat’s theorem) implies

0 = ∫
T
f(w)dw = ∫

γ(z0,z1)
f(w)dw + ∫

γ(z1,z)
f(w)dw + ∫

γ(z,z0)
f(w)dw

= F (z1) − F (z) + ∫
γ(z1,z)

f(z)dz

In other words, F (z1) − F (z) = −∫γ(z1,z) f(w)dw = ∫γ(z,z1) f(w)dw. Therefore,

F (z1) − F (z) = ∫
γ(z,z1)

f(w)dw = f(z)∫
γ(z,z1)

dw + ∫
γ(z,z1)

(f(w) − f(z))dw

Now ∫γ(z,z1) dw = z1 − z, because of Theorem 10.3 and because the constant function has z as an anti-

derivative. Therefore

∣F (z1) − F (z)
z1 − z

− f(z)∣ =
RRRRRRRRRRR

∫γ(z,z1)(f(w) − f(z))dw
z1 − z

RRRRRRRRRRR
≤ supw∈γ(z,z1) ∣f(w) − f(z)∣

lengthγ(z, z1)
∣z1 − z∣

= supw∈γ(z,z1) ∣f(w) − f(z)∣

where the inequality uses Proposition 9.5. Since f is continuous at z it follows that supζ∈γ(z,z1) ∣f(w) −
f(z)∣ → 0 as z1 → z. This ensures

F ′(z) ∶= lim
z1→0

F (z1) − F (z)
z1 − z

= f(z)

as required. □

Theorem 12.4 (Cauchy’s Theorem for convex sets). If f is holomorphic on a convex open set U ⊂ C
then ∫γ f(z)dz = 0 for every closed curve γ in U .

Proof. Theorem 12.3 implies the existence of a holomorphic F on U with F ′(z) = f(z). The fundamental
theorem of calculus (Theorem 10.3) therefore implies

∫
γ
f(z)dz = F (γ(b)) − F (γ(a)) = 0

if γ is parametrised as [a, b] → C. □
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13. A slight generalisation of Cauchy’s theorem

The proof of Theorem 12.3 actually gives the stronger result:

Corollary 13.1. Let U ⊂ C be a convex open subset and suppose f ∶ U → C is continuous and holomorphic
on U ∖ {p}. Then f admits a primitive on U ∖ {p}.

Proof. Since f is continuous at p it is bounded in an open neighbourhood of p. Therefore, one can repeat
the proof from Theorem 12.3 but replacing the use of Goursat’s theorem by the more general version in
Theorem 11.2. □

Applying the fundamental theorem of calculus yields:

Corollary 13.2. Let U ⊂ C be a convex open subset and suppose f ∶ U → C is continuous, and holomorphic
on U ∖ {p}. Then ∫γ f(z)dz = 0 for any closed curve γ in U ∖ {p}.

14. Winding numbers

Definition 14.1. Let γ ∶ [a, b] → C be a piecewise smooth curve and p a point not on γ. The winding
number of γ around p is defined as

W (γ, p) = 1

2πi
∫
γ

1

z − p
dz = 1

2πi
∫

b

a

γ′(t)
γ(t) − p

dt

Example 14.2. If γ is a circle γ(t) = p + eit for t ∈ [0,2π] then Example 9.6 shows that W (γ, p) = 1.

For general curves γ we should view W (γ, p) as counting the number of times γ wraps around p. To
demonstrate why this is reasonable we assume p = 0 for simplicity and consider the complex logarithm

Log(z) = log ∣z∣ + iArg(z)

where log denotes the real logarithm. The argument Arg is only well defined up to a multiple of 2πi
and this ambiguity means that Log cannot be defined as a holomorphic function on the whole of C.
Nevertheless, it can be defined locally and when defined its derivative is 1/z (as follows from the identity

eLog(z) = z). This means the derivative of Log(γ(t)) is γ′(t)
γ(t) and so the Fundamental theorem of calculus

gives:

(14.3) ∫
b

a

γ′(t)
γ(t)

dt = Log(γ(b)) − Log(γ(a)) = i (Arg(γ(b)) −Arg(γ(a)))

(since γ is a closed curve and the real part of Log(γ(t)) has no ambiguity these reals parts cancel in the

above formula). In other words, ∫
b
a
γ′(t)
γ(t) dt measures the change of the argument of γ(t) as we go around

the path γ.

Warning 14.4. In (14.3) is it important to note that the formula only makes sense if we define Arg locally
in a continuous way. For example, if we defined the argument to jump to back to 0 as it approaches 2π
then the formula would be wrong because the right hand side would be zero).

15. Cauchy’s Integral formula

Theorem 15.1. Let f be holomorphic on an open convex set U and let γ be a piecewise smooth closed
curve in U . Then

W (γ, p)f(p) = 1

2πi
∫
γ

f(z)
z − p

fz

for any p ∈ U ∖ γ([a, b]).

Proof. Set

g(z) =
⎧⎪⎪⎨⎪⎪⎩

f(z)−f(p)
z−p z ≠ p

f ′(p) z = p
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Then g(z) is continuous on U and holomorphic on U ∖{p}. By the improved versions of Cauchy’s theorem
we have ∫γ g(z)dz = 0 and so

0 = 1

2πi
∫
γ

f(z) − f(p)
z − p

dz = 1

2πi
∫
γ

f(z)
z − p

dz − 1

2πi
∫
γ

f(p)
z − p

dz

= 1

2πi
∫
γ

f(z)
z − p

dz −W (γ, p)f(p)

□

As a special case we obtain:

Theorem 15.2 (Cauchy’s integral formula). Let f be holomorphic on an open set U containing a circle
γ, oriented in the counter clockwise direction, and its interior. Then

f(p) = 1

2πi
∫
γ

f(z)
z − p

fz

for any p in the interior of γ.

Proof. This follows from Theorem 15.1. Since γ is a circle we can find a convex open subset U ′ ⊂ U
which contains γ and its interior. If p lies in the interior of γ then we know W (γ, p) = 1, and so

f(p) = f(p)W (γ, p) = 1
2πi ∫γ

f(z)
z−p fz. □



4H-5E FURTHER COMPLEX ANALYSIS 2025 21

Lecture 5.2

16. Uniform convergence and limits of integrals

Recall that if one has a sequence of functions fn → f then in general it is a subtle question whether

∫ f = lim ∫ fn. One case where one can interchange the limit and the integral is when the fn → f
uniformly. This means:

Definition 16.1. For any subset X ⊂ C we say that a sequence of functions fn ∶ X → C converges to
f ∶X → C uniformly if for any ϵ > 0 there exists an N > 0 such that

∣fn(z) − f(z)∣ < ϵ
for any n > N and any z ∈X. This is equivalent to asking that

supz∈X ∣fn(z) − f(z)∣ → 0

as n→∞.

Lemma 16.2. Let γ ∶ [a, b] → C be a piecewise smooth curve and suppose fn, f are continuous functions
on γ with fn → f uniformly on Im(γ). Then

∫
γ
fn(z)dz → ∫

γ
f(z)dz

as z →∞.

Proof. We have

∣ ∫
γ
fn(z)dz − ∫

γ
f(z)dz∣ = ∫

γ
(fn − f)(z)dz

≤ supz∈γ ∣fn(z) − f(z)∣ length(γ) → 0

as n→∞. □

17. More on Cauchy’s integral formula

Theorem 17.1 (Cauchy’s integral formula for derivatives). If f is holomorphic on an open set U then f
has infinitely many holomorphic derivatives. Moreover, for any circle C ⊂ U oriented counter clockwise
whose interior is also contained in U one has

f (n)(z) = n!

2πi
∫
C

f(w)
(w − z)n+1

for n ≥ 0 for all z in the interior of C.

Proof. Argue by induction. When n = 0 the statement is Theorem 15.2. For n > 0 assume that the first
n − 1-th derivatives of f exist and that

f (n−1)(z) = (n − 1)!
2πi

∫
C

f(w)
(w − z)n

fw

Then
f (n−1)(z + h) − f (n−1)(z)

h
= n − 1!

2πi
∫
C
f(w)( 1

h(w − z − h)n
− 1

h(w − z)n
)dw

Now choose a sequence hN ∈ C converging to zero as N →∞. To prove the theorem we have to understand

limN→∞
n − 1!
2πi

∫
C
f(w)FN(w)dw

where FN(w) = 1
hN (w−z−hN )n −

1
hN (w−z)n . Now

FN(w) →
d

du
( 1

(w − z)n
) = n

(w − z)n+1

as N →∞. We claim this convergence is uniform on C. This claim allows us to use Lemma 16.2 to deduce
that

limN→∞
n − 1!
2πi

∫
C
f(w)FN(w)dw =

n − 1!
2πi

∫
C

f(w)n
(w − z)n+1

dw = n!

2πi
∫
C

f(w)n
(w − z)n+1

dw
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which finishes the proof. Therefore, it only remains to check the claimed uniform convergence. This can
be done by showing that:

supw∈C ∣ (
1

hN(w − z − hN)n
− 1

hN(w − z)n
) − n

(w − z)n+1
∣ → 0

as N → 0. To see this recall the expansion

1

(1 − x)n
=
∞
∑
k=0
(n + k − 1

k
)xk

which converges for ∣x∣ < 1. We find that

1

h(w − z − h)n
− 1

h(w − z)n
= 1

h(w − z)n
⎛
⎝

1

(1 − h
w−z )n

− 1
⎞
⎠

= n

(w − z)n+1
+ h

∞
∑
k=2
(n + k − 1

k
)( hk−2

(w − z)n+k
)

whenever h ∈ C has ∣ hw−z ∣ < 1. Now C is compact and so there is a constant A > 0 with ∣ 1
w−z ∣ < A for all

w ∈ C. This means that

∣ 1

h(w − z − h)n
− 1

h(w − z)n
− n

(w − z)n+1
∣ ≤ hAn+2

∞
∑
k=2
(n + k − 1

k
)∣hA∣k−2

whenever ∣hA∣ < 1. In particular, if B = An+2∑∞k=2 (
n+k−1
k
) 1
2k−2 , then

supw∈C ∣ (
1

hN(w − z − hN)n
− 1

hN(w − z)n
) − n

(w − z)n+1
∣ ≤ hNB

whenever ∣hNA∣ < 1/2. We conclude that the left hand side converges to zero as N →∞ which was what
we wanted.

□

Example 17.2. Let γ be the unit circle. We can use Cauchy’s integral formula for derivatives to calculate
the integral

∫
γ

cos(z)
z3

dz

Applying Theorem 17.1 with f = cos, n = 2, and z = 0 gives

∫
γ

cos(z)
z3

dz = f (2)(0)2πi
2!
= − cos(0)πi = −πi

18. Cauchy’s estimate

Theorem 18.1 (Cauchy’s estimate). Let U ⊂ C be an open subset and f ∶ U → C holomorphic. If U
contains a circle γ centered at z and of radius R > 0, and its interior, then

∣f (n)(z)∣ ≤
n! supw∈γ ∣f(w)∣

Rn

Proof. Theorem 17.1 (Cauchy’s derivative formula) implies

∣f (n)(z)∣ = ∣(n)!
2πi
∫
γ

f(w)
(w − z)n+1

dw∣

≤ n!

2πi
supw∈γ ∣

f(w)
(w − z)n+1

∣ length(γ)

=
n! supw∈γ ∣f(w)∣

Rn

□
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19. Liouville’s Theorem

Definition 19.1. A function f ∶ C→ C is entire if it is holomorphic on C.

Theorem 19.2 (Liouville’s Theorem). Any bounded entire function f ∶ C→ C is constant.

Proof. We show that f ′(z) = 0. This will imply f(z) is constant because C is a connected topological
space. Let w ∈ C and let γR be the circle around w of radius R. Then Cauchy’s estimate (Theorem 18.1)
implies

∣f ′(w)∣ ≤ 1

R
supz∈γR ∣f(z)∣

Since f is bounded we have supz∈γR ∣f(z)∣ ≤ B for some constant B > 0 and all R. Letting R →∞ shows
∣f ′(w)∣ = 0 and so f ′(w) = 0. □

Theorem 19.3 (Fundamental theorem of algebra). Every non-constant polynomial

f(z) = a0 + a1z + . . . + anzn, an ∈ C
has a root in C (i.e there exists z ∈ C such that f(z) = 0).

Proof. Suppose that f has no roots. Then 1
f is an entire function. On the other hand, if we assume the

leading coefficient an in f(z) is non-zero then

f(z) = zn (an +
an−1
z
+ . . . + a0

zn
)

and the term an−1
z + . . .+

a0
zn → 0 as ∣z∣ → ∞. We can therefore choose an R > 0 such that if ∣z∣ > R > 0 then

∣an−1
z
+ . . . + a0

zn
∣ < ∣an∣

2

Note that for a, b ∈ C the triangle inequality gives ∣a∣ = ∣a + b − b∣ < ∣a + b∣ + ∣b∣ and so ∣a∣ − ∣b∣ < ∣a + b∣. In
particular, if ∣b∣ < ∣a∣/2 then

∣a∣/2 < ∣a∣ − ∣b∣ < ∣a + b∣
Applying this with a = an and b = an−1

z + . . . +
a0
zn gives

∣an∣∣zn∣
2

< ∣f(z)∣

when z > R. We conclude that

∣ 1

f(z)
∣ < 2

∣an∣∣zn∣
< 2

∣an∣Rn

when ∣z∣ > R. On the other hand, since 1
f is continuous on the compact set DR(0) = {z ∈ C∣z∣ ≤ R} it

follows that 1
f is bounded on DR(0). We conclude that 1

f is bounded on C and so Liouville’s theorem

(Theorem 19.2) implies 1
f , and hence f , is constant on C. This is a contradiction. □
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20. Morera’s theorem

Theorem 20.1 (Morera’s Theorem). Let U ⊂ C be a convex open subset and suppose f ∶ U → C is a
continuous function. If ∫T f(z)dz = 0 for any triangle T ⊂ U whose interior is also contained in U then f
is holomorphic.

Proof. In the proof of Theorem 12.3 we showed that if ∫T f(z)dz = 0 for each triangle then, if z0 ∈ U is
fixed, the function

F (z) ∶= ∫
γ(z0,z)

f(z)dz

(recall γ(z0, z) is the straight line from z0 to z) is holomorphic on u with complex derivative f(z). Cauchy’s
integral formula for derivatives (Theorem 17.1) then implies that F ′(z) = f(z) is also holomorphic. □

Corollary 20.2. If U ⊂ C is convex and open and fn ∶ U → C is a sequence of holomorphic functions
converging uniformly to f ∶ U → C then f is also holomorphic.

Proof. The uniform limit of continuous functions is again continuous by a problem on the exercise sheets.
Therefore, f is continuous and we can deduce that f is holomorphic by showing ∫T f(z)dz = 0 for each
triangle in T and applying Morera’s theorem (Theorem 20.1). By Goursat’s theorem (Theorem 11.1) we
know ∫T fn(z)dz = 0 and so, using Lemma 16.2, we find

0 = limn→∞∫
T
fn(z)dz = ∫

T
f(z)dz

□

21. Taylor’s theorem

Theorem 21.1 (Taylor’s theorem). If f ∶ U → C is a holomorphic function on an open subset U ⊂ C and
p ∈ U . Then for any open disk D ⊂ U centred at p one has

f(z) =
∞
∑
n=0

an(z − p)n

where

an =
f (n)(p)
n!

Proof. Using a linear change of variable we can assume p = 0 (replace f(z) by the function z ↦ f(z − p)).
Let R > 0 be the radius of D. Since f is holomorphic in an open neighbourhood of D Cauchy’s integral
formula gives

f(z) = 1

2πi
∫
γ

f(w)
w − z

dw

for γ the boundary of D (oriented counterclockwise). We can write

1

w − z
= 1

w

1

(1 − z/w)
= 1

w

∞
∑
n=0
( z
w
)
n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S(w)

whenever ∣z/w∣ < 1. In particular, this is valid whenever z lies in the interior of D and w ∈ γ. Now fix
such a z and, for N > 0, set

SN(w) =
1

w

N

∑
n=0
( z
w
)
n
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Notice that for w ∈ γ one has

∣S(w) − SN(w)∣ = ∣
1

w

∞
∑
n=N
( z
w
)
n

∣

= ∣ 1
w
( z
w
)
N ∞
∑
n=0
( z
w
)
n

∣

≤ ∣z∣
N

∣w∣N+1
∞
∑
N=0
∣ z
w
∣n = ∣z∣

N

RN+1
1

(1 − ∣z∣/R)
= ∣z∣

N

RN
1

(R − ∣z∣)
Therefore, ∣S(w) − SN(w)∣ → 0 independently of w ∈ γ and so the sequence of functions SN converges
uniformly to S. It follows that f(w)SN(w) also converges uniformly to f(w)S(w) and so Lemma 16.2
implies

limN→∞
1

2πi
∫
γ
f(w)SN(w)dw =

1

2πi
∫
γ
f(w)S(w)dw

We know already that the right hand side of this expression is f(z). The left hand side is
∞
∑
n=0
( 1

2πi
∫
γ

f(w)zn

wn+1
dw) =

∞
∑
n=0

zn ( 1

2πi
∫
γ

f(w)
wn+1

dw)

By Cauchy’s integral formula for derivatives (Theorem 17.1) each term in the right hand sum equal
f(n)(0)
n! .

Thus

f(z) =
∞
∑
n=0

zn
f (n)(0)
n!

as required. □
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22. Isolated zeroes

Theorem 22.1. Let f be a holomorphic function on a connected open set U and wn is a non-constant
sequence in U converging to p ∈ U . If f(wn) = 0 then f(z) = 0 for all z ∈ U .

Proof. Let D be an open disc centered at p and contained in U . By Taylor’s theorem (Theorem 21.1), f
admits a power series expansion on D

f(z) =
∞
∑
n=0

an(z − p)n

for any z ∈ D. Since f is continuous we have f(p) = lim f(wn) = 0. Therefore a0 = 0. We want to show
an = 0 also for all n > 0. If not we can find a smallest m ≥ 1 with am ≠ 0. Then

f(z) = am(z − p)m

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 +
∞
∑

n=m+1

an
am
(z − p)n−m

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
g(z)

⎞
⎟⎟⎟⎟⎟⎟
⎠

with g(z) a convergent power series on D and so holomorphic. Since g(p) = 0 continuity implies the
existence of a neighbourhood U0 of p such that ∣g(z)∣ < 1 for all z ∈ U0. This means 1+g(z) ≠ 0 on U0 and
so f(z) = am(z − p)m(1 + g(z)) ≠ 0 on U0 ∖ {p}. However, this is a contradiction because by assumption
f(wn) = 0 and since wn → p and is non-constant we have wn ∈ U0 for large n and not all wn equal p. We
conclude that an = 0 for all n ≥ 0 and so f = 0 on D.

It remains to check that this implies f = 0 on the whole connected set U . To see this let

V = {z ∈ U ∣ f = 0 in an open neighbourhood of z}
Then V is non-empty and by definition it is also open. On the other hand V is also closed because we’ve
just shown that if zn → z with f(zn) = 0 then f is also zero in an open neighbourhood of z and so z ∈ V .
Since U is connected the only open and closed subset of U is U itself. Therefore f = 0 on U . □

23. The identity principle

Theorem 23.1 (The identity principle). If f and g are two holomorphic functions on a connected open
subset U ⊂ C and the set of z ∈ U where f(z) = g(z) contains a non-constant sequence converging to a
point in U then f = g on U .

Proof. Apply Theorem 22.1 to f − g to deduce f − g = 0 on U , and so f = g on U . □

Example 23.2. Let f ∶ D2(0) → C be a holomorphic function such that f(1/n) = 1/n2 for all n ∈ Z≥1.
What is f(i)? To compute this set g(z) = z2. Then g(z) is holomorphic and the set of z ∈ D2(0) for
which f(z) = g(z) contains the convergent sequence 1/n. Therefore, the identity principle implies f = g
on D2(0) and so f(i) = i2 = −1.

24. Singularities

Definition 24.1. We say that f has an isolated singularity at p ∈ C if f is defined on an open neighbour-
hood of p but not at the point p itself. In particular, if U ⊂ C is an open subset of C and p ∈ U then any
function f ∶ U ∖ {p} → C has an isolated singularity at p.

Example 24.2. Then function f(z) ∶ C ∖ {0} → C defined by f(z) = 1/z has an isolated singularity at
z = 0. Similarly the function g(z) ∶ C ∖ {0} → C defined by g(z) = z has an isolated singularity.

There are three possible kinds of isolated singularity:

Definition 24.3. If f has an isolated singularity at p ∈ C then either:

(1) p is a removable singularity if f extends to a holomorphic function on a neighbourhood of p. This
implies f(z) → f(p) at z → p.

(2) p is a pole if ∣f(z)∣ → ∞ as z → p.
(3) p is an essential singularity otherwise.



4H-5E FURTHER COMPLEX ANALYSIS 2025 27

Example 24.4. (1) The function 1/z has a pole at z = 0.
(2) Since sin z = z + z3/3! + z5/5! − z7/7! + . . . we have

sin z = z(1 + z2/3! − . . .)
and so 1/ sin z = z−1 (1 + z2/3! − . . .)−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(A)

. Since A is holomorphic on an open neighbourhood of 0 it

follows that 1/ sin z has a pole at z = 0.
(3) Since ez = 1 + z + z2/2! + z3/3! + . . . we have

ez − 1
z
= z + z

2/2! + z3/3! + . . .
z

= 1 + z/2! + z2/3! + . . .

so ez−1
z has a removable singularity at z = 0.

(4) Consider the singularity of the function f(z) = e1/z at z = 0. This singularity is not a removable
singularity because f(1/n) = en and so f(1/n) → ∞ as n → ∞. However, it is also not a pole
because if wn = 1/2πin then wn → 0 but ∣f(wn)∣ = 1. Therefore f(z) has an essential singularity.

25. Riemann’s theorem on removable singularities

Theorem 25.1 (Riemann’s theorem on removable singularities). Let U ⊂ C be open and p ∈ U . If f is
holomorphic on U ∖ {p} and bounded then p is a removable singularity.

Proof. Set

g(z) =
⎧⎪⎪⎨⎪⎪⎩

(z − p)2f(z) if z ≠ p
0 if z = p

Then g is holomorphic on U ∖ {p}. We also have

∣g(z) − g(p)
z − p

∣ = ∣z − p∣∣f(z)∣

Since f is bounded on U ∖ {p} there exists an M > 0 such that ∣f(z)∣ <M for all z ∈ U ∖ {p}. Therefore

∣g(z) − g(p)
z − p

∣ = ∣z − p∣∣f(z)∣ ≤M ∣z − p∣

It follows that g is holomorphic at p with g′(p) = 0. Let D be an open disk in U centred at p. Then
Theorem 21.1 (Taylor’s theorem) allows us to write

g(z) =
∞
∑
n=2

an(z − p)n = (z − p)2
∞
∑
n=2

an(z − p)n−2

Therefore f(z) = ∑∞n=2 an(z − p)n−2 on D ∖ {p}. However, the series ∑∞n=2 an(z − p)n−2 has a radius of
convergence R ≥ 0 for which it converges when ∣z − p∣ < R and diverges when ∣z − p∣ > R (Theorem 7.3).
Since the series converges for z ∈D ∖ {p} we have R greater than or equal the radius of D. In particular,
R > 0. Therefore Theorem 7.5 implies f is holomorphic in an neighbourhood of z and so f has a removable
singularity at p. □
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26. Local forms of singularities

Here we consider a holomorphic function f with an isolated singularity at p ∈ C.
● If f has an isolated zero at p (i.e. removable singularity at p with the extension f(p) = 0) and is
not identically zero in a neighbourhood of p then there exists a holomorphic g with g(p) ≠ 0 and
an n ≥ 1 such that

(26.1) f(z) = (z − p)ng(z)

in a neighbourhood of p.

Proof. Since p is a removable singularity we can extend f to a holomorphic function in a disk D
around p. We can then use Taylor’s theorem (Theorem 21.1) to write

f(z) =
∞
∑
n=0

an(z − p)n

for z ∈ D. Since f(p) = 0 we have a0 = 0. Since f is not identically zero there is a smallest n ≥ 1
with an ≠ 0. Then

f(z) = (z − p)n
∞
∑
m=0

am+n(z − p)m

and we can take g(z) = ∑∞m=0 am+n(z − p)m which is holomorphic on D by Theorem 7.5. □

Definition 26.2. The order of an isolated zero at p is the integer n in the expression (26.1).

● If f has a pole at p then there exists a non-vanishing holomorphic function g and n ≥ 1 such that
g(p) ≠ 0 and

(26.3) f(z) = g(z)
(z − p)n

on D ∖ {p} for D a disk around p.

Proof. Since f has a pole at z = p we have that 1/f(z) → 0 as z → p. Therefore 1/∣f(z)∣ is
bounded in a neighbourhood of p and so Riemann’s removable singularity theorem allows us to
extend 1/f(z) to a holomorphic function h(z) on a neighbourhood around p. Since h(p) = 0 the
local form of isolated zeroes tells us that h(p) = (z − p)nh1(z) for a holomorphic function h1(z)
with h1(p) ≠ 0. Then g(z) = 1/h1(z) is holomorphic in a neighbourhood of p (since h1(p) ≠ 0) and

f(z) = 1

h(z)
= 1/h1(z)
(z − p)n

= g(z)
(z − p)n

as claimed. □

Definition 26.4. The order of a pole at p is the integer n in the expression (26.1).

27. Residues

The local form of a holomorphic function f with a pole at p asserts that f(z) = g(z)
(z−p)n with g holomorphic

in a neighbourhood of p and g(p) ≠ 0. If we write g(z) = ∑∞i=0 a−n+i(z − p)i then

f(z) = a−n
(z − p)n

+ a−n+1
(z − p)n−1

+ . . . + a−1
(z − p)

+G(z)

where G(z) is the holomorphic function ∑∞i=0 ai(z − p)i. We call a−n
(z−p)n +

a−n+1
(z−p)n−1 + . . .+

a−1
(z−p) the principal

part of f at p.

Definition 27.1. The coefficient a−1 in the principal part of f at p is called the residue of f at p and
denoted resz=p(f).

We can also compute the residue of f directly if we write f(z) = h(z)
(z−p)n with h(p) ≠ 0.
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Lemma 27.2. If
h(z)
(z−p)n with h(p) ≠ 0 then

resz=p(f) =
h(n−1)(p)
(n − 1)!

Alternatively,

resz=p(f) =
1

(n − 1)!
limz→p

dn−1

dzn−1
((z − p)nf(z))

Proof. If h(z) has Taylor expansion ∑∞i=0 a−n+i(z − p)i then

h(m)(z) =
∞
∑
i=0
a−n+i(z − p)i−m(i)(i − 1) . . . (i −m + 1)

Therefore

h(m)(p) = a−n+m(m)(m − 1) . . . (1) = a−n+mm!

In particular, h(n−1)(z) = a−1(n − 1)! = resz=p(f)(n − 1)!. The second expressions follows from the first
since the n − 1-th complex derivative of (z − p)nf(z) is continuous. □

Example 27.3. (1) Consider f(z) = ez

zn . This has a pole at zero of order n. Since ez = ∑∞n=0 z
n

n! it
follows that the principal part of f(z) is

1

zn
+ 1

zn−1
+ 1

zn−22!
+ . . . + 1

z(n − 1)!

Therefore, resz=0(f) = 1
(n−1)! .

(2) Consider the function f(z) = z2+1
z(1−z) . This has a pole at z = 0 of order 1 and we can compute its

residue in two says. First, one can use the binomial expansion 1
1−z = 1+z+z

2+ . . . which converges
for ∣z∣ < 1. Therefore,

z2 + 1
1 − z

= (z2 + 1)(1 + z + z2 + . . .) = 1 + z + 2z2 + 2z3 + . . .

It follows that the principal part of f(z) is 1/z and so resz=0(f) = 1. Alternatively, one can use
the formula

resz=0(f) =
1

0!
limz→0 (zf(z)) = limz→0

z2 + 1
1 − z

= 1

(3) Consider the function f(z) = sin z
z2(z−1) . Since sin z = z − z3

3! +
z5

5! − . . . we see that f(z) has a pole of

order 2 at z = 0. Again using the binomial expansion 1
1−z = 1 + z + z

2 + . . . we see that

sin z

z2(1 − z)
= 1

z2
(z − z

3

3!
+ z

5

5!
− . . .)(1 + z + z2 + . . .) = 1

z2
(z + z2 + (1 − 1

3!
)z3 + . . .)

for ∣z∣ < 1. It follows that the principal part of f(z) is 1
z and so resz=0(f) = 1. Alternatively,

resz=0(f) =
1

1!
limz→0

d

dz
(z2f(z)) = limz→0

sin(z) − z cos(z) + cos(z)
(1 − z)2

= 1

Note that the first calculation also shows that sin z
z3(1−z) has residue 1 at z = 0 while sin z

z4(1−z) has

residue 1 − 1
3! at z = 0.

28. Cauchy’s residue formula

Theorem 28.1 (Cauchy’s residue formula). Let U ⊂ C be a convex open subset and suppose f is holo-
morphic on U ∖{p1, . . . , pn} and has a pole at each pi ∈ U . Then for every closed curve γ ⊂ U ∖{p1, . . . , pn}

∫
γ
f(z)dz = 2πi

n

∑
i=1

resz=pi(f)W (γ, pi)

where W (γ, pi) is the winding number of γ around pi (see Definition 14.1).
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In particular, if γ is a simple closed curve oriented counterclockwise and all the poles pi are contained
inside γ then

∫
γ
f(z)dz = 2πi

n

∑
i=1

resz=pi(f)

Proof. For each pole pi let Si(z) denote the principal part of f at pi. Then Si(z) is holomorphic on
U ∖ {pi} and f − Si has a removable singularity at pi. Therefore

f −
n

∑
i=1
Si

extends to a holomorphic function on U and so Cauchy’s theorem for convex domains (Theorem 12.4)
implies

∫
γ
f(z) −

n

∑
i=1
Si(z)dz = 0

In other words,

∫
γ
f(z)dz =

n

∑
i=1
∫
γ
Si(z)dz

Now suppose a
(i)
j ∈ C are such that Si(z) =

a
(i)
−ni

(z−pi)ni
+ . . . + a

(i)
−1

(z−pi) . We have already seen that

∫
γ

1

(z − p)j
dz = 0

for j ≠ 1 (since 1
(z−p)j has a primitive) and so

∫
γ
f(z)dz =

n

∑
i=1
∫
γ

a
(i)
−1

(z − pi)
dz = a(i)−12πiW (γ, pi)

= 2πi
n

∑
i=1

resz=pi(f)W (γ, pi)

□

Note that this generalises both Cauchy’s theorem (Theorem 12.4) because if f has no poles then the
right hand side is zero. It also generalises Cauchy’s integral formula for derivatives (Theorem 17.1) because

if f has no poles then
f(w)

(w−z)n+1 has residue equal 1
n!f
(n)(z) at z.
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29. Using the residue formula

Example 29.1. We can use Cauchy’s residue formula (Theorem 28.1) to compute

∫
γ

z2 + 1
z(1 − z)

dz

for γ the circle of radius 2 centred at the origin and oriented counterclockwise. Since f has two poles in
the interior of γ, namely z = 0 and z = 1, we just need to compute the residue’s at these two poles. Since
they are both poles of order 1 we have

resz=0 f = limz→0
z2 + 1
(1 − z)

= 1

and

resz=1 f = limz→1
(z − 1)(z2 + 1)

z(1 − z)
= −2

Therefore,

∫
γ

z2 + 1
z(1 − z)

dz = 2πi(1 − 2) = −2πi

Example 29.2. Consider the integral ∫γ
sin z

z3(z−2)dz with γ the circle of radius 1 centred at the origin and

parametrised counter clockwise. Since f(z) = sin z
z3(z−2) has two poles at z = 0 and z = 2, and only one of

these is contained in the interior of γ, Cauchy’s residue formula implies

∫
γ
f(z)dz = 2πi resz=0(f)

The binomial expansion computes the Taylor series of 1
z−2 as

1

z − 2
= −1

2

1

1 − (z/2)
= −1

2
(1 + (z/2) + (z/2)2 + . . .)

for ∣z∣ < 1. Since sin z has Taylor expansion z − z3/3! + z5/5! − . . . we have

sin z

z − 2
= −1

2
(1 + (z/2) + (z/2)2 + . . .) (z − z3/3! + z5/5! − . . .)

To compute the residue of f(z) we need to compute the z2 term in this product, and this is

−1
2
⋅ 1
2
= −1

4

Thus resz=0(f) = −1/4 and ∫γ f(z)dz = 2πi ⋅ (−1/4) = −iπ/2.

30. Meromorphic functions

Let U ⊂ C be an open subset. Recall that P ⊂ U is discrete if for every p ∈ P there exists an open
neighbourhood p ∈ U ′ ⊂ U not containing any other point of P .

Definition 30.1. Let U ⊂ C be an open set. We say that a function f is meromorphic on U if there is a
discrete closed subset P ⊂ U such that f ∶ U ∖ P → C is holomorphic and f has an isolated pole at each
p ∈ P .

Note P has no limit points in U , but it could have limit points on the boundary of U .

Example 30.2. (1) If p(z), q(z) are polynomials then the rational function
p(z)
q(z) is a meromorphic

function on C.
(2) More generally, if f, g ∶ U → C are holomorphic and g is not identically zero on a connected

component of U then f
g is meromorphic on U . This uses the fact that g only has isolated zeroes

(Theorem 22.1).
(3) f(z) = 1

e1/z is meromorphic on C ∖ {0} but not on C (since the singularity at z = 0 is an essential

one).
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31. The argument principle

Theorem 31.1 (The argument principle). Suppose that U ⊂ C is open and f is meromorphic on U . If
U contains a counterclock wise oriented circle γ and its interior and f has no zeroes or poles on γ then

1

2πi
∫
γ

f(z)
f ′(z)

dz = ∑
p∈Zeroes(f)

ordp(f) − ∑
p∈Poles(f)

ordp(f)

where ordp(f) denotes the order of a zero or pole p of f and the sums run over zeroes and poles of f
which are contained in the interior of γ.

Proof. By Cauchy’s residue formula (Theorem 28.1) we can compute the integral by describing the poles
of f ′/f in terms of the zeroes and poles of f . To do this we observe that if f1 and f2 are meromorphic
functions then the product formula for differentiation gives

f ′1f
′
2

f1f2
= f

′
1

f1
+ f

′
2

f2

Now suppose f has a zero of order n at z = p. Then f(z) = (z − p)ng(z) in a neighbourhood of p with g
holomorphic (by Section 26) and g(p) ≠ 0. The above formula gives

f ′(z)
f(z)

=
d
dz (z − p)

n

(z − p)n
+ g
′(z)
g(z)

= n

z − p
+ g
′(z)
g(z)

in a neighbourhood of p. Also, since g(p) ≠ 0 we have g′
g holomorphic in a neighbourhood of p. It follows

that f ′/f has a pole of order 1 at z = p and resz=p f
′/f = n = ordz=p(f). Similarly, if f has a pole at z = p

of order n then f(z) = g(z)
(z−p)n in a neighbourhood of p with g(z) holomorphic and g(p) ≠ 0. Thus

f ′(z)
f(z)

=
d
dz (z − p)

−n

(z − p)n
+ g
′(z)
g(z)

= −n
(z − p)

+ g
′(z)
g(z)

Therefore, if f has a pole of order n at p then f ′/f has a pole of order one at p and resz=p(f ′/f) = −n =
−ordz=p(f).

Finally, note that if f ′/f has a pole at z = p then either p is a pole or zero of f , or p is a pole of
f ′. However, if f ′ has a pole at z = p then f must have a pole also, because otherwise f would be
holomorphic in a neighbourhood of p and so f ′ would be also by Cauchy’s integral formula for derivatives
(Theorem 17.1).

To put this all together, choose a disk D inside of U which contains γ and its interior. Cauchy’s residue
formula (Theorem 28.1) implies

1

2πi
∫
γ

f ′(z)
f(z)

dz = ∑
p

resz=p(f ′/f)

By the above we know

∑
p∈Pole(f ′/f)

resz=p(f ′/f) = ∑
p∈Zeroes(f)

ordp(f) − ∑
p∈Poles(f)

ordp(f)

and the theorem follows. □

Example 31.2. Consider the integral ∫γ
z3

z4−1dz where γ is the circle of radius 2 centred at the origin and

parametrised counterclockwise. Notice that 4z3 = d
dz (z

4 − 1) and z4 − 1 has four zeroes at z = 1,−1, i,−1.
Therefore, the argument principle implies

∫
γ

4z3

z4 − 1
dz = 2πi (ord1(z4 − 1) + ord−1(z4 − 1) + ordi(z4 − 1) + ord−i(z4 − 1))

Since z4 − 1 = (z − 1)(z + 1)(z − i)(z + i) each of these zeroes is of order one. Therefore

∫
γ

4z3

z4 − 1
dz = 2πi ⋅ 4 = 8πi

and so

∫
γ

z3

z4 − 1
dz = 2πi
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32. Rouché’s theorem

Theorem 32.1 (Rouché’s theorem). Suppose U ⊂ C is open and contains a closed disk D = Dr(z0) with
boundary ∂D = {z ∈ C ∣ ∣z − z0∣ = r}. Suppose f, g ∶ U → C are holomorphic and

∣f(z) − g(z)∣ < ∣f(z)∣

for every z ∈ ∂D. Then f and g have the same number of zeroes in D (counting multiplicities) and no
zeroes on ∂D.

The assertion that f and g have the same number of zeroes in D with multiplicity can be expressed as
saying

∑
p∈Zeroes(f)

ordp(f) = ∑
p∈Zeroes(g)

ordp(g)

Proof. The inequality ensures neither g(z) = 0 nor f(z) = 0 for any z ∈ ∂D. Therefore h = g
f , which is

meromorphic on U , has no zeroes or poles on ∂D. The Argument principle (Theorem 31.1) therefore
ensures that

∫
∂D

h′(z)
h(z)

dz = 2πi
⎛
⎝ ∑
p∈Zeroes(g)

ordp(g) − ∑
p∈Zeroes(f)

ordp(f)
⎞
⎠

when ∂D is traversed counter clockwise. Therefore, we will be done if we can show ∫∂D
h′(z)
h(z) dz = 0. To

do this let γ be a parametrisation of ∂D and rewrite the inequality in the hypothesis as

∣1 − h(γ(t))∣ = ∣1 − g(z)
f(z)

∣ < 1

for z = γ(t). Since h(γ(t)) ≠ 0 it follows that the curve h ○ γ is contained in the open disk D1(1). Since
D1(1) is convex and 1

z is holomorphic on D1(1) it follows from Theorem 12.4 that

0 = ∫
h○γ

1

z
dz = ∫

2

0
π
h′(γ(t))
h(γ(t))

dt = ∫
γ

h′(t)
h(t)

dt

which finishes the proof. □

The following is a standard application of this result:

Example 32.2. How many roots does f(z) = 1 + 2z + 7z2 + 3z5 have in the unit disk? To solve this take
g(z) = 7z2. Then for z on the unit circle one has

∣f(z) − g(z)∣ ≤ 1 + 2 + 3 = 6 ≤ 7 = ∣g(z)∣

Therefore, Theorem 32 applied with D equal the closed unit disk implies that f(z) and g(z) have the
same number of zeroes in D. Since g(z) clearly has two (0, with multiplicity two) the same is true of f .

Example 32.3. Show that all the roots of g(z) = z6 + z + 1 are contained in the annulus

{z ∈ C ∣ 1
2
< ∣z∣ < 2}

First set f(z) = z6 and note that for ∣z∣ = 2 one has

∣f(z) − g(z)∣ = ∣z + 1∣ ≤ 3 < 26 = ∣f(z)∣

Therefore Rouché’s theorem implies g has the same number of zeroes as f in D2(0). In other words all 6
zeroes of g are contained in D2(0). It remains to show that g has no zeroes on D1/2(0). For this compare
g with h(z) = 1 for ∣z∣ = 1/2:

∣h(z) − g(z)∣ = ∣z6 + z∣ ≤ (1/2)6 + 1/2 = 1/64 + 1/2 < 1 = ∣h(z)∣

Again Rouch’e’s theorem implies g and h have the same number of zeroes on D1/2(0) and no zeroes on
∂D1/2(0) so g(z) ≠ 0 for ∣z∣ ≤ 1/2.
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33. Open mapping theorem

Definition 33.1. A map of topological spaces f ∶X → Y is open if U ⊂X open implies f(U) ⊂ Y is open.

Theorem 33.2 (Open mapping theorem). A non-constant holomorphic function f ∶ U → C on a connected
open subset U ⊂ C is an open map.

Proof. It suffices to show that f(U) ⊂ C is open because if U ′ ⊂ U then we can repeat the argument with
f replaced by its restriction to U ′. For this we choose w = f(p) for some p ∈ U and show that

Dϵ(w) ⊂ Image(f)
for some ϵ > 0. Consider the function

F (z) = f(z) −w
Since f is non-constant so is F . Thus Theorem 22.1 implies p is an isolated zero of F and so there is a
closed disk D around p upon which F only vanishes at p. Set

ϵ =minz∈∂D ∣F (z)∣
Since F (z) ≠ 0 for z ∈ ∂D it follows by compactness of ∂D that ϵ > 0. We can therefore choose q ∈Dϵ(w)
not equal w. Define G(z) = f(z) − q. Then for any z ∈ ∂D we have

∣F (z) −G(w)∣ = ∣w − q∣ < ϵ ≤ ∣F (z)∣
Therefore, Rouché’s theorem implies F and G have the same number of zeroes in D. Since F has exactly
one zero so does G. It follows that there exists z ∈D such that G(z) = 0, i.e.

f(z) = q
and so q ∈ Image(f). Since q was any point in Dϵ(w) it follows that Dϵ(w) ⊂ Image(f) as required. □

Example 33.3. There exists no non-constant holomorphic function on any connected open subset U ⊂ C
such that

Re(f) = Im(f)
If such an f existed then Image(f) would be contained inside the line L = {x = y} in C = {x+ iy ∣ x, y ∈ R}.
However, L is not open in C and therefore the Image(f) is not open in C. This contradicts the open
mapping principle.

34. Maximum modulus principle

Theorem 34.1 (Maximum modulus principle). Let f ∶ U → C be holomorphic with U ⊂ C connected and
open. If f is non-constant then ∣f ∣ cannot obtain a maximum on U .

Proof. Suppose p ∈ U attains a maximum for ∣f ∣. Let q = f(p). The open mapping theorem (Theorem 33.2)
implies f(U) is open and therefore contains an open disk around q. However, any open disk around q
contains points whose modulus is strictly greater than q. In particular, there exists z ∈ U with ∣f(z)∣ >
∣f(p)∣ which is a contradiction. □
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35. More on essential singularities

In the last few lectures we’ve looked at the structure of holomorphic functions with singularities which
are either removable singularities or poles. Now we’ll see what can be said about the remaining kind of
singularity, essential singularities.

Theorem 35.1 (Casorati–Weierstrass). Suppose that U ⊂ C is an open subset and that f ∶ U ∖ {p} → C
is holomorphic with an essential singularity at p. Then Image(U ∖ {p}) is dense in C.

Proof. Argue by contradiction. If the image is not dense then there exists w ∈ C and δ > 0 such that

∣f(z) −w∣ > δ
for all z ∈ U ∖ {p}. We can therefore define a new function

g(z) = 1

f(z) −w
which is holomorphic on U ∖ {p} (since f(z) − w ≠ 0) and is bounded by δ−1. Riemann’s removable
singularity theorem (Theorem 25.1) therefore implies that g has a removable singularity at p and so can
be extended to a holomorphic function g ∶ U → C. If g(p) ≠ 0 then f(z) − w = 1

g(z) is holomorphic in a

neighbourhood of p which implies f(z) − w (and hence f also) has a removable singularity at p. This
contradicts the fact that f has an essential singularity at p. If g(p) = 0 then ∣f(z) − w∣ = ∣ 1

g(z) ∣ → ∞ as

z → p and so f(z) −w (and hence f also) has a pole at p. This again contradicts the fact that f has an
essential singularity at p. Therefore, the ImageU ∖ {p} must be dense. □

Combined with the open mapping theorem (Theorem 33.2) this shows that the image under a holo-
morphic function of any disc around an essential singularity is ”almost” everything. In fact, this can be
stated in a very strong way:

Theorem 35.2 (Great Picard’s theorem). With hypotheses as in Theorem 35.1 the image of U ∖ {p}
contains every z ∈ C with at most one exception. Moreover, if p ∈ ImageU ∖ {p} then f(z) = p for
infinitely many z ∈ U ∖ {p}.

Proof. The proof of this is more difficult and we won’t cover it in this course. □

For example, f(z) = e1/z attains every complex number for z in a neighbourhood of 0, except for 0 ∈ C.

36. Conformal mappings

Definition 36.1. Let U and V be open subsets of C. A conformal isomorphism is a holomorphic bijection
f ∶ U → V .

Example 36.2. (1) The non-constant affine maps f(z) = az + b for a, b ∈ C, a ≠ 0 are conformal
isomorphisms of C with itself. The inverse of f is g(z) = 1

a(z − b).
(2) The map f(z) = ez is a conformal isomorphism of the strip

{z ∈ C ∣ 0 < Im(z) < π}
onto

H = {z ∈ C ∣ Im(z) > 0}
The inverse if the complex logarithm on H given by Log(reiθ) = log(r) + iθ for θ ∈ [0, π] for log
the real logarithm.

(3) f(z) = −1
2(z + z

−1) is a conformal isomorphism of D+ = {z ∈ D ∣ Im z > 0} onto H.

(4) The map F (z) = i−z
i+z is a conformal isomorphism H→ D with inverse is given by G(w) = i1−w1+w .
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Proposition 36.3. Suppose f ∶ U → V is a conformal bijection. Then f ′(z) ≠ 0 for all z ∈ U and the set
theoretic inverse f−1 ∶ V → U is holomorphic with

(f−1)′(w) = 1

f ′(f−1(w))

Proof. Suppose that f ′(p) = 0 for some p ∈ U . Then f has Taylor expansion

f(z) = a0 + ∑
n≥m

an(z − p)n

around p with m ≥ 2 and am ≠ 0. Therefore F (z) ∶= f(z) − a0 has an isolated zero of order m ≥ 2 at p.
Since the zero is isolated we can find δ > 0 such that F has no other zero in Dδ(p). We can also choose δ
so that f ′(z) ≠ 0 on Dδ(p) (if this were the case then all higher derivatives of f would vanish on Dδ(p)
and so f would be constant, contradicting the fact that f is a bijection). Let

ϵ =minz∈∂Dδ(p) ∣F (z)∣
and consider a non-zero q ∈Dϵ(0). We then apply Rouché’s theorem to G(z) = F (z)−q and deduce, since

∣q∣ = ∣G(z) − F (z)∣ < ∣F (z)∣
for all z ∈ ∂Dδ(p), that G and F have the same number of zeroes in Dδ(p). Therefore G has m zeroes in
this disc. It these zeroes were repeated then G(z) = (z−w)mG1(z) for w ∈Dδ(p) and G1(z) holomorphic.
But then G′(z) =m(z −w)m−1G1(z) + (z −w)mG′(z) and so G′(w) = 0. However, G′(w) = f ′(w) and we
assumed f ′(z) ≠ 0 for all z ∈ Dδ(p). It follows that the zeroes of G are all distinct which contradicts the
assumption that f , and hence G also, is injective.

To finish we have to show that f−1 is holomorphic. The open mapping theorem (Theorem 33.2) applied
to f gives that if U ′ ⊂ U is open then

(f−1)−1(U) = f(U)
is open also. Therefore f−1 is continuous and so if w = f(z) and w0 = f(z0) then if w → w0 then z → z0.
Since

f−1(w) − f−1(w0)
w −w0

= z − z0
f(z) − f(z0)

it follows that, as w → w0, this converges to 1/f ′(z0). As f ′(z0) ≠ 0 this limit exists and so f−1 is
holomorphic and (f−1)′(w) = 1

f ′(f−1(w)) . □

37. Schwarz’s lemma

Theorem 37.1 (Schwarz’s Lemma). Recall D = D1(0). Let f ∶ D → D be holomorphic with f(0) = 0.
Then

(1) ∣f(z)∣ ≤ ∣z∣ for all z ∈ D.
(2) If ∣f(p)∣ = ∣p∣ for some p ∈ D ∖ {0} then f(z) = eiθz for some θ ∈ [0,2π). In other words f is a

rotation of D.
(3) ∣f ′(0)∣ ≤ 1 and if ∣f ′(0)∣ = 1 then f is also a rotation of D.

Proof. Define

g(z) =
⎧⎪⎪⎨⎪⎪⎩

f(z)
z =

f(z)−f(0)
z−0 z ≠ 0

f ′(0) z = 0
Then g is holomorphic on D ∖ {0} and continuous at 0. Riemann’s removable singularity theorem (The-
orem 25.1) implies g is holomorphic at z = 0. For any 0 < r < 1 the maximum modulus principle
(Theorem 34.1) ensures

max
z∈Dr(0) ∣g(z)∣ =maxz∈∂Dr(0) ∣

f(z)
z
∣

Therefore max
z∈Dr(0) ∣g(z)∣ ≤

1
r . Letting r → 1 gives that

supz∈D ∣g(z)∣ ≤ 1
This shows that
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● If z ∈ D ∖ {0} then ∣f(z)∣∣z∣ ≤ 1 which proves (1).

● ∣g(0)∣ = ∣f ′(0)∣ ≤ 1 which proves the first part of (3).
● If for some p ∈ D one has ∣g(p)∣ = 1 then ∣g∣ achieves its maximum in the interior of D so the
maximum modulus principle (Theorem 34.1) implies g is constant. As ∣g(p)∣ = 1 we must have
g(z) = eiθ for all z ∈ D and some θ ∈ [0,2π). This implies

f(z) = eiθz
for all z ∈ D ∖ {p}. If p ∈ D ∖ {0} this proves (2). If p = 0 then this proves the last part of (3).

□
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38. Conformal automorphisms of the disk

Definition 38.1. If U ⊂ C is open then a conformal isomorphism f ∶ U → U is called a conformal
automorphism.

Note that the set of conformal automorphisms of U form a group under composition.

Proposition 38.2. If α ∈ D then

fα(z) =
α − z
1 − αz

is a conformal automorphism of D.

Proof. We see that fα is holomorphic on C ∖ { 1α}. Since ∣α∣ = ∣α∣ if ∣α∣ < 1 then 1
∣α > 1. In particular, fα is

holomorphic on D.
Next, we have to show that fα(z) ∈ D for all z ∈ D. For this note that fα is defined on ∂D and

fα(eiθ) =
α − eiθ

1 − αeiθ
= α − eiθ

eiθ(e−iθ − α)
= −1
eiθ

w

w

for w = eiθ − α. Therefore ∣fα(eiθ)∣ = 1 for all eiθ and so, since fα is not constant, the maximum modulus
principle implies ∣fα(z)∣ < 1 for all z ∈ D. In other words fα(z) ∈ D for all z ∈ D.

Finally, one shows that fα is its own inverse. Indeed

fα ○ fα(z) =
α − α−z

1−αz
1 − α α−z

1−αz
= z − ααz

1 − αα
= z

In particular, it follows that fα is a bijection and hence a conformal isomorphism. □

Theorem 38.3. Any conformal automorphism of D has the form

f(z) = eiθ α − z
1 − αz

for some θ ∈ [0,2π) and α ∈ D.

Proof. Let α = f−1(0). Since fα(0) = α we see that if

g = f ○ fα
then g(0) = f(fα(0)) = f(α) = f(f−1(0)). Schwarz’s Lemma then implies ∣g(z)∣ ≤ ∣z∣. Since g is a
composition of two conformal automorphisms it is also a conformal automorphism. Therefore so is g−1.
Since g−1(0) = 0 Schwarz’s lemma also implies ∣g−1(z)∣ ≤ ∣z∣. Therefore

∣g(z)∣ ≤ ∣z∣ = ∣g−1(g(z))∣ ≤ ∣g(z)∣

and so ∣g(z)∣ = ∣z∣ for all z ∈ D. Therefore Schwarz’s lemma implies g(z) = eiθz and so

f(z) = f ○ fα(z) ○ fα(z)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=Id

= g ○ fα(z) = eiθ
α − z
1 − αz

□

39. Riemann mapping theorem

Definition 39.1. We say that two curves γ0, γ1 ∶ [a, b] → U in an open set U ⊂ C are homotopic if

γ0(a) = γ1(a) = α, γ0(b) = γ1(b) = β
and there exists curves γs ∶ [a, b] → U for all s ∈ [0,1] so that each γs(a) = α, γs(b) = β for each s so that

[a, b] × [0,1] → U

given by (t, s) ↦ γs(t) is continuous.

Definition 39.2. A set is simply connected if it is connected and any two paths with the same end points
are homotopic.
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This is a more refined version of our notion of convexity, and in fact one can prove an improved version
of Cauchy’s theorem (Theorem 12.4) where U is only assumed to be simply connected.

Example 39.3. Any convex set U if simply connected. Indeed, if γ0 and γ1 are two contours in U then
set

γs(t) = γ0(t)(1 − s) + γ1(t)s
For any t and s ∈ [0,1] we see that γs(t) lies on the line between γ0(t) and γ1(t). Therefore, γs(t) ∈ U
for any s and t.

Theorem 39.4. Let U ⊊ C be a simply connected open set. Then there exists a conformal isomorphism
f ∶ U → D.

Sketch of proof. First one constructs an injective holomorphic map ψ ∶ U → D. For this one takes w0 /∈ U
(which is possible since U ≠ C) and considers the squareroot f of the function z ↦ z − w0 on U . Thus
f(z)2 = z −w0 and that such a square root exists uses the fact that U is simply connected. Clearly f is
injective because f(z1) = f(z2) implies z1−w0 = z2−w0. To produce an injective function taking values in
D use the open mapping theorem (Theorem 33.2) to find a disk Dr(a) ⊂ f(U) with 0 < r < ∣a∣ (so a ≠ 0).
Notice that if f(z1) = −f(z2) then we also have z1 = z2 and so f(z) ≠ −a for any z ∈ U . In particular

ψ(z) = r

f(z) + a
is holomorphic on U . We also have ∣ψ(z)∣ < 1 and, since f is injective, so is ψ. In particular, the set

F = {ψ ∶ U → D ∣ ψ is injective and holomorphic}
is non-empty.

The second step is to show that if ψ ∈ F with ψ(U) ≠ D then for each z0 ∈ U there exists ψ1 ∈ F with

∣ψ1(z0)∣ ≥ ∣ψ′(z0)∣
This is done by using the automorphisms fα = z−α

1−αz . Indeed, if α ∈ D∖ψ(U) then consider g ∶ U → D with

g(z)2 = fα ○ ψ
(again the simply connectedness of U is used to take the square root of the function). Then g ∈ F and
one takes ψ1 = fβ ○ g for β = g(z0). The desired inequality is then a consequence of Schwarz’s lemma.

Finally, one fixed z0 ∈ U and sets
η = supψ∈F ∣ψ′(z0)∣

To finish the proof it suffices to find ψ ∈ F for which ∣ψ′(z0)∣ = η because the previous paragraph implies
there can not then exist an element of D ∖ ψ(U).

□
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Lecture 10.2

40. Constructing entire functions with prescribed zeroes

Definition 40.1. If a sequence an ∈ C for n ≥ 1 is given then we say that the product
∞
∏
n=1
(1 + an)

converges if the limit

limN→∞
N

∏
n=1
(1 + an)

of partial products exists.

Proposition 40.2. If the series ∑∞n=1 ∣an∣ converges (i.e. ∑∞n=1 an is absolutely convergent) then ∏∞n=1(1+
an) converges. Additionally, the product converges to zero if and only if 1 + an = 0 for some n.

Proof. If ∑∞n=1 ∣an∣ converges then there exists an N > 0 such that ∣an∣ < 1/2 for n ≥ N . It follows that

log(1 + an) ∶=
∞
∑
m=1
(−1)m−1a

m
n

m

converges for n > N (because the radius of convergence of this power series is 1) and one has 1 + an =
elog(1+an). This means for M > N we can write

PM =
M

∏
n=1
(1 + an) = C

M

∏
n=N

elog(1+an) = CeBM

where BM = ∑Mn=N bn with bn = log(1 + an) and C = ∏N−1n=1 (1 + an). Note that if ∣z∣ ≤ 1/2 then

∣ log(1 + z)∣ ≤
∞
∑
n=1

∣zn∣
n
≤ ∣z∣ (

∞
∑
n=0

1

2n
) = ∣z∣

1 − 1/2
= 2∣z∣

and so ∣bn∣ ≤ 2∣an∣. Therefore the sequence BM converges to a complex number B. Since the exponential
function is continuous it follows that eBM → eB. Therefore the sequence PM converges.

Finally note that if 1 + an ≠ 0 for all n then C is non-zero and the limit of the partial products is CeB

is also non-zero since eB ≠ 0. □

Proposition 40.3. Suppose that Fn ∶ U → C is a sequence of holomorphic functions on an open subset
U ⊂ C. If there exists cn > 0 such that ∑∞n=1 ∣cn∣ converges and

∣Fn(z) − 1∣ < cn for all z ∈ U
then

(1) The product ∏∞n=1 Fn(z) converges uniformly in U to a holomorphic function F (z).
(2) If Fn(z) ≠ 0 for any z ∈ U and n ≥ 1 then

F ′(z)
F (z)

=
∞
∑
n=1

F ′n(z)
Fn(z)

Proof. For the first part write Fn(z) = 1 + an(z) with ∣an(z)∣ ≤ cn. Then the previous argument shows
there exists N > 0 such that for M > N we have

PM(z)
M

∏
n=1
(1 + an(z)) = C(z)eBM (z)

with C(z) = ∏N−1n=1 (1 + an(z)) and BM(z) = ∑Mn=N bn(z) with ∣bn(z)∣ ≤ 2∣an(z)∣ ≤ 2cn. This shows that

∑Mn=N bn(z) converges uniformly in z. Since the integer N depends only on the cn it is also independent of
z. It follows that the PM(z) converges uniformly on U . Since the uniform limit of holomorphic functions
is holomorphic (Theorem 20.2) it follows that ∏∞n=1 Fn(z) is also holomorphic.

The second part uses that if a sequence of holomorphic functions fn converges uniformly to f then the
sequence of derivatives f ′n converges uniformly to f ′ on any disk in U . This implies that

F ′(z)
F (z)

= limn→∞

d
dz ∏

N
n=1 Fn(z)

∏Nn=1 Fn(z)



4H-5E FURTHER COMPLEX ANALYSIS 2025 41

But the product rule gives

d

dz

N

∏
n=1

Fn(z) =
N

∑
k=1

F ′k(z)(∏
n≠k

Fn(z))

and so
F ′(z)
F (z)

=
∞
∑
k=1

F ′k(z)
Fk(z)

□

41. Weierstrass infinite products

Theorem 41.1. (Weierstrass infinite products) Suppose that an ∈ C is a sequence with ∣an∣ → ∞ as
n →∞. Then there exists an entire function f ∶ C → C such that f has zeroes only at each an, and these
zeroes are of order ni. Moreover, any other such function with this property has the form f(z)eg(z) for
an entire function g(z).

Note here the sequence an can have repetitions, and in this case we say f has multiple zeroes at the
same an if the order of the zero equals the multiplicity of an in the sequence.

Sketch of proof. The naive guess to construct f would be as ∏∞n=1(1 − z/an). However, one cannot guar-
antee this product converges. Instead, takes

f(z) = zm
∞
∏
n=1

En(z/am)

where m is the multiplicity of 0 in the sequence an and we define

Ek(z) =
⎧⎪⎪⎨⎪⎪⎩

(1 − z) if k = 0
(1 − z)ez+z2/2+...zk/k if k ≥ 1

To check convergence of this infinite product one argues in a disk of radius R > 0. One shows that if
∣z∣ ≤ 1/2 then

∣1 −Ek(z)∣ ≤ c∣z∣k+1

for a constant c not depending on k. In particular, if ∣an∣ > 2R then

∣1 −En(z/am)∣ ≤
c

2n+1

and so the product converges uniformly. □

Example 41.2. A key example of this construction is the formula

sinπz

π
= z

∞
∏
n=1
(1 − z

2

n2
)

To show this first consider the function on C ∖Z defined by

F (z) =
∞
∑

n=−∞

1

z + n
= lim
N→∞

∑
∣n∣≤N

1

z + n
= 1

z
+
∞
∑
n=1

2z

z2 − n2

This function satisfies the properties:

(1) F (z + 1) = F (z)
(2) F (z) = 1

z + F0(z) with F0(z) holomorphic in a neighbourhood of zero.
(3) F (z) has simple poles at the integers and no other singularities.

These three properties are also satisfied by the function π cot(πz) = π cosπz
sinπz and so

∆(z) = π cot(πz) − F (z)
is periodic (i.e. ∆(z + 1) = ∆(z)) and has a removable singularity at the origin (and so also at all the
integers). It follows that ∆ is entire. One then shows (by arguments that we don’t give here) that ∆ is
bounded on C. Therefore Liouville’s theorem (Theorem 19.2) gives

π cot(πz) = 1

z
+
∞
∑
n=1

2z

z2 − n2
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Now we can use this to prove our product formula for sin. Set G(z) = sinπz
π and P (z) = z∏∞n=1 (1 − z2

n2 ).
Note P (z) converges because the series ∑∞n=1 1/n2 converges. We also have:

P ′(z)
P (z)

= 1

z
+
∞
∑
n=1

2z

z2 − n2

by Proposition 40.3. Since G′(z)/G(z) = π cotπz it follows that G′(z)/G(z) = P ′(z)/P (z) and so

(G(z)
P (z)

)
′

= P (z)
G(z)

(P
′(z)
P (z)

− G
′(z)
G(z)

) = 0

Thus P (z) = cG(z) for a constant c and dividing by π and letting z → 0 shows c = 1.
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