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Lecture 1

Useful references:

● Neukirch’s Algebraic number theory, Chapter IV, §1 and §2.
● Neukirch, Schmidt, and Wingberg’s Cohomology of number fields, Chap-
ter I, §1.

1. Profinite spaces

Let (I,≤) be a directed set (i.e. an ordered set such that for any α1, . . . , αn ∈ I
there exists α ∈ I with αi ≤ α for i = 1, . . . , n).

Definition 1.1. An inverse system of sets is a collection (Xα, fα,α′)α′≤α∈I with
(I,≤) a directed set, Xα a set, and fα,α′ ∶Xα →Xα′ a map whenever α′ ≤ α. The
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inverse limit (sometimes also called the projective limit) is then defined as

lim←ÐXα ∶= {(xα)α∈I ∈∏
I

Xα ∣ fα,α′(xα) = xα′ for α′ ≤ α} ⊂∏
α∈I

Xα

Furthermore,

(1) If each Xα is a topological space and each fα,α′ is continuous then we say
(Xα, fα,α′)α′≤α∈I is an inverse system of topological spaces. In this case
lim←ÐXα is equipped with the subspace topology coming from the product

topology on ∏αXα.
(2) If each Xα is a group and each fα,α′ is a group homomorphism then we

say (Xα, fα,α′)α′≤α∈I is an inverse system of groups. In this case lim←ÐXα

is a group with multiplication defined by

(xα) ⋅ (yα) = (xαyα)
(3) Similarly, if each Xα is a ring and the fα,α′ are ring homomorphisms then

lim←ÐXα is a ring.

Remark 1.2. Open sets in the product topology on ∏αXα are unions of sets of
the form ∏αUα where Uα ⊂Xα is open and Uα =Xα for all but finitely many α.
This is the coarsest topology (i.e the topology with the fewest open sets) making
each of the projections pα ∶∏αXα →Xα continuous.

Exercise 1.3. Let X be a set and let Xα ⊂X be a collection of subsets indexed
by α ∈ I. Make I into a directed set by putting α ≤ α′ if Xα ⊂ Xα′ . Then show
that (Xα, fα,α′), where fα,α′ ∶Xα →Xα′ is the inclusion, is an inverse system and
that

lim←ÐXα =⋂
α
Xα

The following exercise gives another way to think about an inverse limit:

Lemma 1.4. The inverse limit lim←ÐXα satisfies the following universal property:

If Y is a set equipped with maps pα ∶ Y →Xα for each α ∈ I such that

pα′ = fα,α′ ○ pα
whenever α′ ≤ α then there is a unique map p ∶ Y → lim←ÐXα such that pα is the

composite Y → lim←ÐXα →Xα.

Exercise 1.5. (1) Prove Lemma 1.4.
(2) Show that if (Xα, fα,α′)α′≤α∈I is an inverse system of topological spaces

and Y is a topological space for which each pα is continuous then p ∶ Y →
lim←ÐXα is continuous. Similarly, if (Xα, fα,α′)α′≤α∈I is an inverse system

of groups and Y is a group with each pα a group homomorphism then
p ∶ Y → lim←ÐXα is a group homomorphism.

Example 1.6. Let A be a ring and for n′ ≤ n let fn,n′ ∶ A[x]/(xn)→ A[x]/(xn′)
denote the quotient map. Then (A[x]/(xn), fn,n′) in an inverse system over the
directed set (Z≥1,≤) and there is an isomorphism of rings

lim←ÐA[x]/(x
n) ≅ A[[x]]
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where A[[x]] denotes the power series ring over A in the variable x, i.e. the ring
whose elements are formal series ∑∞n=0 anxn with an ∈ A.

Example 1.7. Let p be a prime number For n′ ≤ n let fn,n′ ∶ Z/pnZ → Z/pn′Z
denote the quotient map. Then (Z/pnZ, fn,n′) is an inverse system over the
directed set (Z≥1,≤). The inverse limit is denoted Zp and is called the p-adic
integers.

Example 1.8. If n′ divides n let fn,n′ ∶ Z/nZ→ Z/n′Z be the quotient map. Then
(Z/nZ, fn,n′) is an inverse system over the directed set Z≥1 which is ordered by

divisibility (i.e. n′ ≤ n is n′ divides n). The inverse limit is denoted Ẑ.
Exercise 1.9. Prove that there is an isomorphism of rings

Ẑ→∏
p

Zp

where the product runs over all primes p. Hint: use the Chinese remainder
theorem which asserts that for n ∈ Z≥1 with prime decomposition n = pa11 . . . pamm
the natural map

Z/nZ→
m

∏
i=1

Z/paii Z

sending a + nZ↦ (a + paii Z)i is an isomorphism.

Definition 1.10. A topological space X is profinite if X is homeomorphic to
lim←ÐXα for Xα an inverse system of finite sets equipped with the discrete topology.

Proposition 1.11. Suppose X is a Hausdorff topological space.1 Then X is profi-
nite if and only if X is compact and each x ∈X admits a basis of neighbourhoods
consisting of open and closed subsets.

Proof. If each Xα is finite and discrete then each Xα is compact and so ∏αXα

is compact by Tychonoff’s theorem. Note that

lim←ÐXα = ⋂
α′≤α

Yα,α′

where
Yα,α′ = {(xα) ∈∏

α

Xα ∣ fα,α′(xα) = xα′}

Each Yα,α′ is the preimage of diagonal Xα′ ⊂Xα′ ×Xα′ under

∏
α

Xα →Xα′ ×Xα′ , (xα)↦ (fα,α′(xα), xα′)

and so each Yα,α′ is closed. Hence lim←ÐXα is closed and so compact also. Since

every subset of each Xα is open and closed it follows from Remark 1.2 that every
element of ∏αXα has a basis of neighbourhoods which are open and closed. The
same is therefore true of X = lim←ÐXα.

Now we prove the converse. Let I1 be the set of subsets R ⊂ X ×X defining
an equivalence relation, i.e.

1Recall that a topological space X is Hausdorff if x1 ≠ x2 implies the existence of disjoint
open neighbourhoors Ui of xi with x1 /∈X2 and x2 /∈ U1.
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(1) (x, y) ∈ R⇒ (y, x) ∈ R
(2) (x,x) ∈ R
(3) (x, y), (y, z) ∈ R⇒ (x, z) ∈ R

Let I ⊂ I1 denote the subset consisting of R ∈ I1 for which X/R is finite and
discrete for the quotient topology. Note I is an ordered set via inclusion and
the X/R, together with the projections X/R → X/R′ whenever R ⊂ R′, form an
inverse system. By (2) of Exercise 1.4 there is a continuous map

p ∶X → lim←Ð
R∈I

X/R

Explicitly it is given by x ↦ (xR)R where xR denotes the image of x in X/R.
Applying the following lemma shows that p is surjective.

Lemma 1.12. Let p ∶ X → lim←ÐXα be a continuous map with X compact and

each Xα Hausdorff. If X → lim←ÐXα → Xα is surjective for each α. Then p is
surjective.

Proof. If (xα) ∈ lim←ÐXα then set Yα equal to the preimage of xα under X →
lim←ÐXα → Xα. This is closed since Xα is Hausdorff and so is compact since X

is compact. Each Yα is also non-empty by assumption. Furthermore, any finite
intersection Yα1∩. . .∩Yαn is non-empty since it contains Yα for any α ≥ α1, . . . , αn.
Exercise 1.13 therefore implies ∩α∈IYα is non-empty. Surjectivity follows since
p(x) = (xα) for any x ∈ ∩αYα. □

For injectivity suppose x1 ≠ x2. Since X is Hausdorf there is an open and
closed neightbourhood U of x1 not containing x2. Then the equivalence relation
R consisting of (x, y) with either x, y ∈ U or x, y /∈ U is such that X/R consists of
two points with the discrete topology. Furthermore, the images of x1 and x2 in
X/R are distinct which shows p(x1) ≠ p(x2).

We conclude that p ∶ X → lim←ÐR∈I X/R is a continuous bijection between com-

pact spaces. Any such map has a continuous inverse and so p is a homeomor-
phism. □

Exercise 1.13. Let X be a compact topological space and Xα a collection of
closed subsets indexed by a (possibly infinite) index set I. Suppose ∩ni=1Xαi is
non-empty for any finite collection α1, . . . , αn ∈ I. Then ∩α∈IXα is non-empty.

Exercise 1.14. Suppose that f ∶ G → H is continuous and injective map of
profinite spaces. Show that there are injections of finite discrete spaces fα ∶ Gα →
Hα such that f ∶ G→H equals

lim←Ð fα ∶ lim←ÐGα → lim←ÐHα

Lecture 2

Useful references:

● Neukirch’s Algebraic number theory, Chapter IV, §1 and §2.
● Neukirch, Schmidt, and Wingberg’s Cohomology of number fields, Chap-
ter I, §1.
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2. Profinite groups

Definition 2.1. A topological group G is a group equipped with a topology so
that the map

G ×G→ G, (g, h)↦ g−1h

is continuous. This is the same as asking that both i ∶ G → G,g ↦ g−1 and
m ∶ G ×G→ G, (g, h)↦ gh are continuous.

Lemma 2.2. (1) For g ∈ G the maps G → G given by h ↦ hg and h ↦ gh
are homeomorphisms.

(2) If U ⊂ G is open then Ug is open for every g ∈ G.
(3) If H ⊂ G is an open subgroup then H is also closed in G.
(4) If H ⊂ G is a subgroup then p ∶ G→ G/H is an open map for the quotient

topology on G/H. Recall this means that the image p(U) is open in G/H
for any open U ⊂ G.

(5) G/H is Hausdorff if and only if H is closed, and G/H is discrete if and
only if H is open.

(6) If G is compact and H ⊂ G is closed then H is open if and only if G/H
is finite with the discrete topology.

Proof. (1) The composite G → G ×G mÐ→ G is continuous when the first map is
given by h↦ (h, g). Likewise, if the first map is h↦ (h, g−1). The same argument
applies for h↦ gh.

(2) This follows directly from (1).
(3) We can write G as the disjoint union of cosets gH for g ∈ G. Since H is

open each gH is open by (2). Thus G∖H = ⋃g/∈H gH is open and so H is closed.
(4) By the definition of the quotient topology p(U) is open in G/H if and only

if p−1(p(U)) is open. We can write p−1(p(U)) = UH = ⋃h∈H Uh. This is open by
(2).

We leave (5) as an exercise.
(6) Using (5) we only need to show that H open implies G/H is finite. For

this we note that the cosets gH form an open cover of G so compactness ensures
this cover has a finite refinement. This shows G/H is finite. □

Exercise 2.3. Prove part (5) of Lemma 2.2.

Definition 2.4. A topological group G is a profinite group if it is profinite as a
topological space.

Proposition 2.5. A topological group G is profinite if and only if it is compact
and the unit element 1 ∈ G admits a basis of neighbourhoods consisting of open
and closed normal subgroups.

In this case we have G ≅ lim←ÐG/H where H runs over the compact open normal

subgroups of G.

Proof. The only if direction follows from Lemma 1.11 and (2) from Lemma 2.2.
For the if direction: if G is profinite then G is compact and 1 ∈ G admits a basis of
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open and closed neighbourhoods by Lemma 1.11. Let U be such a neighbourhood
and set

H ′ = {h ∈ U ∣ Uh ⊂ U and Uh−1 ⊂ U} = {h ∈ U ∣ Uh ⊂ U} ∩ {h ∈ U ∣ Uh−1 ⊂ U}

It is easy to check that H is a subgroup of G. We claim it is open. Since h↦ h−1

is a homeomorphism of G it suffices to show H ′′ = {h ∈ U ∣ Uh ⊂ U} is open. Note
that

Y ∶= {(h1, h2) ∈ U ×U ∣ h1h2 ∈ U}
is open in G×G, since it is the intersection of U ×U and the preimage of U under
the multiplication map. Therefore, if v ∈ V and Ui ⊂ U is open then there exists
an open neighbourhood Vi ⊂ U of v such that UiVi ⊂ U . Since U is compact we
can consider a finite open cover U = ⋃ni=1Ui and consider Vv ∶= ⋂i Vi which is an
open neighbourhood in U of v. If v′ ∈ Vv then uv′ ∈ U for all u ∈ U and so Vv ⊂H ′′
which shows H ′′ is open. To conclude we show that the normal subgroup

H = ⋂
g∈G

gH ′g−1 ⊂H

it open. We have to show the union can be taken over a finite collection of g ∈ G.
Note that g0H

′g−10 = g1H ′g−11 if and only if gH ′ =H ′g for g = g−11 g0. In particular,
g0H

′g−10 = g1H ′g−11 if g0H
′ = g1H ′. Thus

H =
n

⋂
i=1
giH

′g−1i

for gi chosen so that G = ⋃ni=1 giH ′.
For the last assertion let Uα be a basis of open neighbourhoods of 1 ∈ G

consisting of open normal subgroups ordered by inclusion. Then there is a map
G → lim←ÐUα

G/Uα which is surjective by Lemma 1.12. Since G is Hausdorff we

have ∩αUα = {1} and so G → lim←ÐG/Uα has trivial kernel. Therefore, the map

is a continuous bijection between compact Hausdorff spaces. Any such map is a
homeomorphism. □

Exercise 2.6. If H ⊂ G is a subgroup of a profinite group then show that the
closure of H in G is equal to the intersection of all finite index open subgroups
of G which contain H.

For any topological group G we define the profinite completion

Ĝ = lim←Ð
N

G/N

where the limit is taken over all finite index open normal subgroups N ⊂ G. We
view Ĝ as a profinite group. There is a continuous homomorphism G→ Ĝ.

(1) Equip Z with the following topology: A subset U ⊂ Z is open in the p-
adic topology if and only if for each u ∈ U there exists n ≥ 0 such that
u + pnZ ⊂ U . Show this makes Z into a topological group. The profinite
completion of Z with respect to this topology is Zp since the finite index
open subgroups in Z are pnZ for n ≥ 0.
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(2) The profinite completion of Z with respect to the discrete topology is Ẑ
since the finite index open subgroups are nZ for n ≥ 1.

Exercise 2.7. Give an example of a topological group G with Ĝ = {1}.

Exercise 2.8. Let G = SLn(Z) equipped with the discrete topology. Show that
the natural map G→∏p SLn(Zp) induces a surjection

f̂ ∶ Ĝ→∏
p

SLn(Zp)

Show that f̂ is an isomorphism if and only if every finite index subgroup of SLn(Z)
is a congruence subgroup (i.e. contains {g ∈ SLn(Z) ∣ g ≡ 1 modulo N} for some
N > 1.)

[For n > 2 every finite index subgroup of SLn(Z) is a congruence subgroup but
this is not the case for n = 2!]

Exercise 2.9. Let G be a profinite group. Show that the power map

G ×Z→ G, (g, n)↦ gn

extends to a continuous map G× Ẑ→ G also written (g, n)↦ gn. Show this map
satisfies gngm = gn+m. and (gn)m = gnm.

3. Infinite Galois theory

We now describe a source of profinite groups which will be particularly im-
portant for us. Using profinite groups we will be able to extend classical Galois
theory, which usually concerns finite field extensions, to infinite extensions. First
we recall the main theorem of classical Galois theory.

Definition 3.1. A field extension K ⊂ L is algebraic if for every x ∈ L there
exists non-zero f(X) ∈K[X] such that f(x) = 0. An algebraic closure Ka ⊃K is
a maximal algebraic extension, i.e. if L ⊃Ka is algebraic then L =Ka. Algebraic
closures exist.

Let L/K be an algebraic extension. If L/K is finite then we say L/K is Galois
if the group Aut(L/K) has order equal to the degree of L/K. In general L/K is
Galois if

L = ⋃
K⊂K′⊂L

K ′

where the union runs over finite Galois subextensions. For any Galois extension
L/K we write G(L/K) = Aut(L/K).

Theorem 3.2 (Main theorem of Galois theory). Let K ⊂ L be a finite Galois
extension. Then

H ↦ LH ∶= {x ∈ L ∣ σ(x) = x for all h ∈H}
defines a bijection between the set of subgroups in G and the set of subextensions
K ⊂K ′ ⊂ L. The inverse of this bijection is given by

K ′ ↦ {σ ∈ G(L/K) ∣ σ(x) = x for all x ∈K ′} = Aut(L/K ′)
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Furthermore, a subgroup H in G is normal if and only if the corresponding subex-
tension K ⊂ LH is Galois. In this case restriction G(L/K) → G(K ′/K) induces
an isomorphism

G(L/K)/G(L/K ′) ≅ G(K ′/K)

If L/K is not finite then G(L/K) will no longer be a finite group. However:

Proposition 3.3. For any Galois extension K ⊂ L there is an isomorphism of
groups

G(L/K)→ lim←Ð
K⊂L′⊂L

G(L′/K), σ ↦ (σ∣L′)L′

in which the inverse limit is taken over all finite Galois subextensions and the
transition maps are given by restriction.

Proof. Suppose (σL′) ∈ lim←ÐK⊂L′⊂LG(L
′/K). Since L = ⋃K⊂L′⊂LL′ with the union

over finite Galois L′ we define an automorphism σ of L by σ(x) = σL′(x) whenever
x ∈ L′. This is well-defined since if x ∈ L′′ then, by choosing a finite Galois
extension subextension K ⊂ L′′′ ⊂ L with L′, L′′ ⊂ L′′′ we have

σL′(x) = σL′′′(x) = σL′′(x)

(because the transition maps G(L′′′/K) → G(L′/K) and G(L′′′/K) → G(L′′/K)
are given by restriction). Hence the map in the theorem is surjective. For in-
jectivity note that σ ∈ Aut(L/K) is in the kernel if and only if σ(x) = x for
every x contained in a finite Galois subextension. As L is the union of all such
subextensions it follows that σ = 1. □

Lecture 3

Useful references:

● Neukirch’s Algebraic number theory, Chapter IV, §2 (for Galois theory)
● Atiyah–Macdonald, Introduction to commutative algebra, §8

4. Infinite Galois theory continued

Via the identification from Proposition 3.3 we make G(L/K) into a profinite
group by giving each of the finite groups G(L′/K) the discrete topology.

Example 4.1. Here we see an example which shows that the bijection between
subextensions K ⊂ L′ ⊂ L and subgroups of G(L/K) given by H ↦ LH does
not extend directly to infinite extensions L/K. Take K = Fp and L an algebraic

closure Fp for a prime p. Then there is a unique degree n extension Fpn of Fp
in Fp. This extension is Galois and there are isomorphisms Z/nZ ≅ G(Fpn/Fp)
sending 1 onto the automorphism of Fpn given by x↦ xp. Thus,

G(Fp/Fp) ≅ lim←Ð
n

Z/nZ = Ẑ
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with 1 ∈ Ẑ corresponding to the automorphism x ↦ xp of Fp. If H ⊂ G(Fp/Fp)
denotes the subgroup corresponding to Z under this identification then

FHp = {x ∈ Fp ∣ xp = x} = Fp = F
G(Fp/Fp)
p

This shows the above map is not a bijection.

Exercise 4.2. Let L/K be a Galois extension and suppose H,H ′ ⊂ G(L/K) are
subgroups whose closures are equal. Show that LH = LH′ .

Theorem 4.3. Let L/K be a Galois extension. Then

H ↦ LH = {x ∈ L ∣ σ(x) = x for all σ ∈H}
defines a bijection between closed subgroups of G(L/K) and subextensions K ⊂
L′ ⊂ L. Under this bijection finite subextensions correspond to open subgroups
and Galois subextensions correspond to normal subgroups.

Furthermore, if K ⊂ L′ ⊂ L is a Galois subextension then G(L/K)→ G(L′/K)
induces an isomorphism

G(L/K)/G(L/L′) ≅ G(L′/K)

Proof. If K ⊂ L′ ⊂ L is a subextension then L′ = ⋃L′′ with the union running
over finite subextensions K ⊂ L′′ ⊂ L′. Hence G(L/L′) = ⋂L′′ G(L/L′′) which is
closed since each G(L/L′′) is closed.

If H ⊂ G is a subgroup then H ⊂ G(L/LH). We will show this is an equality
if H is closed. For this take g ∈ G(L/LH) and any finite Galois subextension
K ⊂ L′′ ⊂ L. Let H ′ be the image of H under the restriction map G(L/K) →
G(L′′/K). Since LH ∩ L′′ = (L′′)H′ the main theorem of Galois theory implies
that

H ′ = G(L′′/LH ∩L′′)
In particular, the image of g in G(L′′/K) is contained in H ′. Thus G(L/L′′)g
and H have a common intersection. As L′′ varies the G(L/L′′)g form a basis of
open neighbourhoods of g and so, as H is closed, it follows that g ∈H. □

5. Artinian rings

Here all rings are commutative and contain the identity.

Definition 5.1. An R-moduleM is Noetherian if every non-empty set {Mα ⊂M}
contains a maximal element, i.e. an Mα such that if Mα′ ⊃Mα then Mα′ =Mα.
An R-module M is Artinian if every non-empty set of submodules contains a
minimal element.

We say R is Noetherian (respectively Artinian) if it is Noetherian (respectively
Artinian) when viewed as a module over itself.

Exercise 5.2. Show that a module M is Noetherian if and only if every sub-
module is finitely generated.

Proposition 5.3. A ring R is Artinian if and only if it is Noetherian and every
prime ideal in R is maximal.
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For the proof we will use the a number of lemmas:

Lemma 5.4. If R is a field and M is a vector space over R then the following
are equivalent:

(1) M has finite dimension.
(2) M satisfies the ascending chain condition.
(3) M satisfies the descending chain condition.

Proof. This is clear. □

Corollary 5.5. Let R be a ring such that 0 = m1 . . .mn for (not necessarily dis-
tinct) maximal ideals mi ⊂ R. Then R is Noetherian if and only if it is Artinian.

Proof. Note that R admits a filtration by ideals

0 =Mn ⊂ . . . ⊂M0 = R, Mi = ∩ij=1mj

so it is enough to prove that each quotient Mi/Mi+1 satisfies the ascending chain
condition if and only if it satisfies the descending chain condition. But each
Mi/Mi+1 is an R/mi+1-vector space so this follows from the previous lemma. □

Lemma 5.6. If R is Artinian then every prime is maximal

Proof. If R is Artinian and p ⊂ R is prime then R/p is also Artinian. Therefore,
if x ∈ R/p then the chain (x) ⊃ (x2) ⊃ . . . becomes stationary and so xn = xn+1y
for some y ∈ R/p and some n ≥ 1. Since R/p is a domain it follows that xy = 1.
Therefore R/p is a field and p is a maximal ideal. □

Lemma 5.7. If R is Artinian then 0 = m1 . . .mn for some collection of maximal
ideals mi ⊂ R

Proof. Since R is Artinian we can choose a minimal element J from the set
of ideals obtained as a product of maximal ideals. If m ⊂ R is maximal then
mJ = J2 = J by minimality. Assume J ≠ 0. Then we can find a minimal ideal I
such that JI ≠ 0. We have (IJ)J = IJ2 = IJ ≠ 0. Thus minimality of I implies
IJ = I. Minimality of I also implies I = (f) for some f ∈ I. As IJ = I we can
write fg = f for some g ∈ J . Hence f(g − 1) = 0. However, as g is contained in
every maximal ideal of R, 1− g is not contained in any maximal ideal. Therefore
1 − g is a unit and so f = 0 which is a contradiction. □

Proof of Proposition 5.3. ⇒ Lemma 5.6 shows every prime is maximal. Combin-
ing Lemma 5.7 and Corollary 5.5 shows R is Noetherian.
⇐ Now suppose R is Noetherian and every prime ideal is maximal. We show

again that m1 . . .mn = 0 for some collection of maximal ideals in R. Then R is
Artinian by Corollary 5.5. If no such product is zero then the set of ideals I ⊂ R
for which R/I is not annihilated by any finite product of maximal ideals in R
is non-empty. Since R is Noetherian there is a maximal such I. We claim this
implies I is prime. To show this suppose fg ∈ I with f, g /∈ I and consider the
exact sequence

0→ R/J
f
Ð→ R/I → R/I + (f)→ 0
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where J = {x ∈ R ∣ fx ∈ I}. The assumption that f, g /∈ I and fg ∈ I implies
both J and I + (f) strictly contain I. By maximality of I it follows that both
R/I + (f) and R/J are killed by a finite product of maximal ideals in R. Hence
R/I is also killed by such a finite product, which is a contradiction. We conclude
that I is prime and hence maximal. However if I is maximal then R/I is killed
by a product of maximal ideals (namely I) which again contradicts the choice of
I. We conclude that 0 = m1 . . .mn for some maximal mi ∈ R which finishes the
proof. □

Definition 5.8. A ring is local if it contains a unique maximal ideal.

Exercise 5.9. Let R be a Noetherian local ring with maximal ideal m. Show
that either mn+1 ≠ mn for any n ≥ 0 or that mn = 0 for some n ≥ 1. In the latter
case R is Artinian.

Exercise 5.10. Show that every Artinian ring is isomorphic to a product of local
Artinian rings.

Exercise 5.11. Let k be a field and A a finitely generated k-algebra (i.e. A is
a quotient of k[X1, . . . ,Xn]). Prove that A is Artinian if and only if A is finite
dimensional when viewed as a vector space over k.

Lecture 4

Useful references

(1) Atiyah–Macdonald, Introduction to commutative algebra, §10
(2) Eisenbud, Commutative Algebra (with a view towards algebraic geome-

try), §7

6. Completion of Noetherian rings

Definition 6.1. Let R be a ring and M an R-module. If I ⊂ R is an ideal then
the I-adic completion of M is the module

M̂ ∶= lim←Ð
n

M/InM

We say that M is I-adically complete if the natural map M → lim←ÐM/I
nM is an

isomorphism.

Example 6.2. For a prime p, Zp is the completion of Z along the ideal (p).

Example 6.3. For any ring R the completion of R[x1, . . . , xn] along the ideal
(x1, . . . , xn) is isomorphic to R[[x1, . . . , xn]].

Example 6.4. Any Artin local ring is complete with respect to its maximal ideal
m because mn = 0 for some n ≥ 1.

If M is an I-adically complete R-module and an ∈ InM then we can define
∞
∑
n=0

an
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as the preimage inM of (0, a1, a1+a2, . . . , a1+. . .+an, . . .) ∈ lim←ÐM/I
nM . Another

way of saying this is that M̂ is complete (in the sense that Cauchy sequences
converge) for the I-adic topology, i.e. the topology whose open sets are of the
form a + InM for a ∈M and n ≥ 0.
Exercise 6.5. Suppose that I, J ⊂ R are ideals and that for each j ≥ 1 there exists
i(j) ≥ 1 such that J jM ⊂ Ii(j)M . Show that the I-adic and J-adic completions
of M are isomorphic

Motivation 6.6. The following example indicates the role completion plays in
a geometric context. Consider the map

π ∶X = {(x, y) ∈ C2 ∣ y2 = x + 1}→ A1

given by (x, y) ↦ x. Let S = C[x] and R = C[x, y]/(y2 − x − 1) which we view as
functions on A1 and X respectively. If f ∈ S then we can construct π♯f ∶= f ○ π
which is a function on X, i.e. an element of R. This produces a homomorphism

π♯ ∶ S → R

which sends x ∈ S onto x ∈ R. Since the derivative of π♯ at x = 0, y = −1 is non-
zero the inverse function theorem (if it applied) would say that the map π has a
local inverse. However, in algebraic geometry this is not possible because there is
no ”local“ inverse of π♯ because one would need to map −y onto a square root of
x + 1. However, such an inverse does exist if we replace π♯ by the corresponding
map between completions around the ideal (x, y + 1) because in

Ŝ = C[[x]]
there is a square root of x + 1 coming from the binomial expansion

√
x + 1 = ∑

n≥0
(1/2
n
)(−1)nxn = −1 − x

2
+ x

2

8

Lemma 6.7. Suppose that R is I-adically complete. Then a ∈ R is a unit if and
only if the image of a in R/I is a unit.

Proof. Suppose that ab0 = 1 − x for x ∈ I. If b1 = ∑∞n=0 xn ∈ R then ab0b1 ≡
(1 − x)(1 + . . . + xn−1) = 1 − xn ≡ 1 modulo In. Therefore ab0b1 − 1 ∈ In for every
n ≥ 1. Since R is I-adically complete ⋂n≥1 In = 0 and so ab0b1 = 1.

□

Corollary 6.8. If R is I-adically complete for I a maximal ideal then R is local,
i.e. I is the unique maximal ideal in R.

Proof. If x /∈ I then its image in R/I is non-zero and hence a unit. Therefore x is
a unit by the previous lemma. It follows that any ideal J ≠ R in R is contained
in J . □

Lemma 6.9. Let f ∶ R → S be a homomorphism of rings such that R is I-adically
complete and S is IS-adically complete. Consider the induced maps

fn ∶ In/In+1 → InS/In+1S
for n ≥ 0. Then
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(1) If f0 is surjective then f is surjective.
(2) If fn is injective for all n then f is injective.

Proof. (1) If f0 is surjective then fn is surjective for every n ≥ 0 because if x ∈ InS
then x = f(y)z for y ∈ In and z ∈ S, and there exists z′ ∈ R such that f(z′)−z ∈ IS.
Hence f(yz′) − x = f(y)(f(z′) − z) ∈ In+1S. Now suppose x ∈ S. By surjectivity
of f0 we can find y1 ∈ R with f(y1) − x ∈ IS. By surjectivity of f1 we can find
y2 ∈ I with f(y2)+f(y1)−x ∈ I2S. Continuing inductively we can, for each n ≥ 1,
find yn ∈ In−1 such that

f(yn) + f(yn−1) − . . . + f(y1) − x ∈ InS
If y = ∑n≥1 yn then f(y) − x = ∑n≥0 f(yn) − x ∈ ImS for every m ≥ 1. Since S is
I-adically complete we have ∩m≥0ImS = 0 and therefore f(y) = x.

(2) We claim that R/In → S/InS is injective for each n ≥ 1. For this consider
the diagram

0 In/In+1 R/In+1 R/In 0

0 InS/In+1S S/In+1S S/InS 0

whose rows are exact. We prove the claim by induction on n. Since R/I → S/I is
f0 the case n = 1 is true by assumption. For the inductive step, if R/In → S/InS
is injective then the two outer vertical maps in the above diagram are injective.
This implies the middle vertical map is also injective (e.g. by the snake lemma).
This gives injectivity of f because if f(x) = 0 then x ∈ In for all n ≥ 0 and hence
x = 0. □

Theorem 6.10 (Hensel’s lemma). Let R be an I-adically complete ring and
suppose f(x) ∈ R[x]. If a ∈ R is such that

f(a) ≡ 0 modulo f ′(a)2I
where f ′(x) ∈ R[x] is the derivative of f , then there exists b ∈ R with f(b) = 0
and

b ≡ a modulo f ′(a)I
If f ′(a) is a non-zerodivisor then b is unique.

For the proof we need the following lemma:

Lemma 6.11. Let R be a ring and f ∈ xR[[x]]. Then the endomorphism

φ ∶ R[[x]]→ R[[x]]
given by ∑ rixi ↦ ∑ rif i is an isomorphism if and only if f ′(0) is a unit.

Proof. Since φ((xn)) ⊂ (xn) we can consider the induced homomorphisms φn ∶
(xn)/(xn+1)→ (xn)/(xn+1). Then φ is an automorphism if and only if each φn is.
Since f(x) ≡ f ′(0)x modulo x2 it follows that f(x)n ≡ f ′(0)xn modulo xn+1. This
shows that φn is given by multiplication by f ′(0)n, and so φ is an automorphism
if and only if f ′(0)n is a unit for all n, i.e. if and only if f ′(0) is a unit. □
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Proof of Theorem 6.10. Set f ′(a) = e. Using the Taylor expansion of f around a
allows us to write

f(a + ex) = f(a) + f ′(a)ex + h(x)(ex)2 = f(a) + e2H(x)

for some h(x) ∈ R[[x]] and H(x) = x + x2h(x). Since H ′(0) = 0 the previous
lemma produces G(x) ∈ R[[x]] with H(G(x)) = x. Substituting x = G(x) gives

f(a + eG(x)) = f(a) + e2x

By hypothesis f(a) = e2c for c ∈ I. Thus, we can evaluate the previous identity
at x = −c to obtain

f(a + eG(−c)) = 0

Thus, we can take b = a + eG(−c).
For uniqueness suppose bi = a + eri for i = 1,2. Then

e2(H(r1) −H(r2)) = 0

and so H(r1) = H(r2). However, since G(H(x)) = x it then follows that r1 =
G(H(r1)) = G(H(r2)) = r2. □

Exercise 6.12. Use Hensel’s lemma to compute the square roots of b ∈ Z×p in
terms of the quadratic reciprocity.

Exercise 6.13. Show that the completion of a reduced ring need not be reduced
via the following example. Let R = k[x, y]/(y2 − x2(x + 1)), which is a domain.
Show that the completion of R at the maximal ideal (x, y) is not a domain.

Completion behaves particularly well for Noetherian rings. For example:

Theorem 6.14. Let R be a Noetherian ring and I ⊂ R an ideal.

(1) The I-adic completion R̂ of R is also Noetherian and InR̂ equals the
I-adic completion of the R-module In.

(2) If 0 → M → N → P → 0 is an exact sequence of finitely generated R-

modules then 0→ M̂ → N̂ → P̂ → 0 is also exact.

Proof. See for example Proposition 10.12, 10.15 and Theorem 10.26 from Atiyah–
Macdonald. □

Corollary 6.15. Let R be a Noetherian ring and I = (a1, . . . , an) an ideal of R.

If R̂ denotes the I-adic completion then

R[[x1, . . . , xn]]/(x1 − a1, . . . , xn − an) ≅ R̂

Proof. Take the (x1, . . . , xn)-adic completion of the exact sequence 0→ (x1, . . . , xn)→
R[x1, . . . , xn]

f
Ð→ R → 0 of R[x1, . . . , xn]-modules where f is given by xi ↦ ai. By

(2) Theorem 6.14 this sequence stays exact. By (1) the I-adic completion of I is
(x1 − a1, . . . , xn − an) ⊂ R[[x1, . . . , xn]] which gives the isomorphism. □
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7. Complete local Noetherian rings

Recall that a ring R if local if it contains a unique maximal ideal m. The
residue field of such a ring is then R/m.

Definition 7.1. A complete discrete valuation ring is a complete Noetherian
local ring whose maximal ideal is principal and generated by a non-nilpotent
element.

Theorem 7.2 (Cohen Structure Theorem). Let R be a complete local Noetherian
ring with maximal ideal m. Then there exists an isomorphism

O[[x1, . . . , xn]]/I
∼Ð→ R

where O is either a field, or a discrete valuation ring with maximal ideal generated
by a prime number p.

Proof, assuming the existence of coefficient rings. We begin with the following
definition: a subring O ⊂ R is a coefficient ring if

(1) the induced map O/m ∩Λ→ R/m is an isomorphism.
(2) Λ is a local ring complete with respect to O ∩m, which is generated by p

where p equals the characteristic of R/m.

Note that if R/m has characteristic zero then O is a field and if p is not nilpotent
in R then O is a discrete valuation ring. The difficult part of the theorem is the
following two facts:

Fact 7.3. Every complete local ring contains a coefficient ring.

Proof. See Tags 0328,0329 and 032A from the Stacks project. □

Let us show how to prove the theorem assuming these facts. Let O ⊂ R be
a coefficient ring and suppose a1, . . . , an generate the maximal ideal of R. Then
there is a homomorphism

O[[x1, . . . , xn]]→ R

given by xi ↦ ai. This homomorphism is surjective modulo the ideal (x1, . . . , xn)
and so is surjective itself. □

Lecture 5

Useful references

● Serre’s ”Local fields“, §4 and 5.

8. Construction of coefficient rings

We are going to prove the existence of coefficient rings (i.e. Fact 7.3) in two
cases which are most important for us, namely when the complete local Noe-
therian ring has finite residue field or residue field of characteristic p. These
constructions will be based on the following application of Hensel’s lemma:
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Lemma 8.1. Suppose that R is a ring complete with respect to a maximal ideal
m and that f(X) ∈ R[X] is such that its image f(X) ∈ R/m[X] has a simple

root a ∈ f(X), i.e. f(a) = 0 and f
′(a) ≠ 0. Then there exists a unique a ∈ R with

f(a) = 0 and a = a modulo m.

Proof. Choose a0 ∈ R lifting a. Then f ′(a0) is a unit in R because its image in
the residue field is non-zero. Applying Hensel’s lemma produces a unique a as
claimed. □

Proposition 8.2. Suppose that R/m has characteristic zero. Then there exists
a coefficient ring (in this case a field) O ⊂ R.

Proof. Since the composite Z→ R → R/m is non-zero so is Z→ R. Therefore this
map extends to an embedding Q → R. y Zorn’s lemma there is then a maximal
subfield K ⊂ R. We claim that K → R → R/m is an isomorphism.

We first show that K → R/m is an algebraic extension. If not there would exist
x ∈ R/m transcendental over K. Choose x ∈ R lifting x and consider the map
S[X] → R given by X ↦ a. This must be an injection since any polynomial in
the kernel would contradict the transcendence of x over K. Hence, the field of
rational functions S(X) embeds into R contradicting the maximality of K.

Therefore, if x ∈ R/m then there is a minimal polynomial f ∈ K[X] with
f(x) = 0 in R/m. Since R/m has characteristic zero the polynomial f has no
repeated roots. Therefore Lemma 8.1 shows there exists x ∈ R with f(x) = 0.
Hence K[x] → R is a subfield in R which equals K by maximality. Thus x ∈ K
and hence K ≅ R/m. □

Next we consider the mixed characteristic setting in an easy case:

Proposition 8.3. Suppose that R is a complete Noetherian local ring maximal
ideal m and finite residue field. Then there exists a coefficient ring.

Proof. Let p denote the characteristic of k = R/m. Then pR ⊂ m and so R is
p-adically complete. Considering the p-adic completion of Z→ R gives a map

Zp → R

Since is R/m is finite it is a separable extension of Fp and so k = Fp(α) for some

α ∈ k which is a simple root of its minimal polynomial over Fp. If f̃(X) ∈ R[X]
lifts f(X) then, by Lemma 8.1, there is a unique α̃ ∈ R lifting α with f̃(α̃) = 0.
Thus, there is a map

O ∶= Zp[X]/(f̃(X))→ R

given by X ↦ α̃. We claim that O is a coefficient ring for R. For this note that,
if α̃ has degree n then there is an isomorphism of Zp-modules

Znp → O

given by (x0, . . . , xn−1)↦ x0+x1X+. . . xn−1Xn−1. This shows that O is p-adically
complete. It also shows that O/pO is a degree n extension of Fp containing k. It
must therefore equal k. □
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In both cases we saw that separability was important. In fact

Lemma 8.4. Let k be a field of characteristic p > 0 and suppose that x ↦ xp is
surjective. If f(X) ∈ k[X] is an irreducible polynomial and f(x) = 0 for x ∈ k
then x is a simple root of f(X).

Proof. If x is not a simple root of f(X) then f ′(x) = 0. It follows that

f(X) =∑ fiX
ip

for some fi ∈ k. Since x↦ xp is surjective we have

f(X) = g(X)p, g(X) =∑
i

f
1/p
i Xi

which contradicts the irreducibility of f . □

Proposition 8.5. Suppose that R is an m-adically complete ring with p ∈ m and
R/m is perfect, i.e. x↦ xp is surjective. Then there exists a unique multiplicative
map

R/m→ R

such that the composition R/m → R → R/m is an bijection. If pR = 0 then this
map is also additive.

Proof. For any x ∈ R/m choose xn such that xp
n

n = x and choose xn ∈ R lifting xn.
We need the following lemma

Lemma 8.6. If a ≡ b modulo mn and p ∈ m then ap ≡ bp modulo mn+1.

Proof. The binomial theorem gives ap−bp = (b−(b−a)p)−bp = ∑ (pn)b
n(b−a)p−n ∈

m2. □

Since xpn+1 ≡ xn modulo m it follows that xp
n+1

n+1 ≡ x
pn
n modulo mn. Therefore

we can consider

x = limn→∞ x
pn+1

n = (xp1, x
p2

2 , . . .) ∈ lim←ÐR/m
n

Let us show that x does not depend upon the choice of lifts xn. If x
′
n are another

choice then since xn ≡ x′n modulo m and the lemma gives that xp
n

n ≡ x′p
n

n modulo
mn+1. This shows that x is independent of the choice of xn and so x↦ x gives a
homomorphism

R/m→ R, x↦ x

as claimed. To see that it is unique suppose f1, f2 ∶ R/m → R are two such
homomorphisms. Then for each x ∈ R/m one has

f1(x1/p
n

) ≡ f2(x1/p
n

) modulo m

and so, using the lemma, we have f1(x) = f1(x1/p
n) ≡ f2(x1/p

n)pn = f2(x) modulo
mn+1. This is true for all n ≥ 1 and so f1(x) = f2(x). □

Corollary 8.7. Suppose that R is a complete local Noetherian ring with pR = 0
for a prime p. Then R admits a coefficient field.
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The construction of O in the previous proposition is a special case of a more
general construction of Witt vectors:

Theorem 8.8. Let k be a perfect field of characteristic p. Then there exists a
complete discrete valuation ring W (k) with maximal ideal generated by p and
W (k)/pW (k) = k. This ring is universal in the following sense.

Furthermore, this ring is uniquely determined in the following sense: for any
complete discrete valuation ring R with maximal ideal generated by p and any
isomorphism f ∶ R/(p) → k there exists a unique isomorphism fR →W (k) such
that f ≡ f modulo p.

Lecture 6

9. Categories and functors

Definition 9.1. A (locally small) category C consists of the following data:

(1) a collection of objects
(2) for any two objects X and Y a set of morphisms HomC(X,Y )
(3) for every object X an element 1X ∈ Hom(X,X)
(4) for any three objects X,Y,Z a composition map

○ ∶ HomC(Y,Z) ×HomC(X,Y )→ HomC(X,Z)

such that
● these composition maps are associative, i.e. (f ○ g) ○ h = f ○ (g ○ h)
● f ○ 1X = f and 1Y ○ f = f for any f ∈ HomC(X,Y ).

We write f ∶X → Y is f ∈ HomC(X,Y ). A morphism f ∶X → Y is an isomorphism
if there exists an inverse g ∶ Y →X such that g ○ f = 1X and f ○ g = 1Y .

Exercise 9.2. Show that if f is an isomorphism then the inverse g is unique.

Example 9.3. The category Set is the category whose objects are sets and whose
morphisms f ∶X → Y are maps of sets. The morphism 1X ∶X →X is the identity
and the composition maps are given by the usual composition of functions.

Example 9.4. The category Group is the category whose objects are groups and
whose morphisms f ∶ G → H are group homomorphisms. Again, the morphism
1X ∶ X → X is the identity and the composition maps are given by the usual
composition of functions.

Similarly, we can define the categories Ring and for a ring R the category
ModR.

Example 9.5. Let X be a topological space. Then there is a category Open(X)
whose objects are open subsets U of X and whose morphisms f ∶ U → U ′ are
inclusions.

Example 9.6. Let G be a group. Then we can view G as a category with a single
object ∗, with HomG(∗,∗) = G, and with composition given by multiplication in
the group and the identity morphism given by 1 ∈ G.
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Example 9.7. For a ring S let Alg
S

denote the category whose objects are

S-algebras, i.e. rings R equipped with a homomorphism S → R, and whose
morphisms are S-algebra homomorphisms, i.e. homomorphisms of rings f ∶ R →
R′ such that

S R

R′

commutes.

Definition 9.8. A category C′ of a category C is a subcategory if every object of
C′ is an object of C and if HomC′(X,Y ) ⊂ HomC(X,Y ) for every pair of objects
X,Y in C′. A subcategory is full if

HomC′(X,Y ) = HomC(X,Y )

for every pair of objects X,Y in C′.

Example 9.9. Let ModfgR denote the category of finitely generated R-modules.

Then ModfgR is a full subcategory of ModR.

Example 9.10. Let Ab denote the category of abelian groups. Then Ab is a full
subcategory of Group.

Example 9.11. Let S be a ring. Then Alg
S
is a subcategory (but not a full

subcategory) of ModS .

Definition 9.12. Let C and D be categories. A covariant functor F ∶ C → D is
given by attaching an object F (X) to every object X in C and by giving maps

F ∶ HomC(X,Y )→ HomD(F (X), F (Y ))

such that

(1) F (f) ○ F (g) = F (f ○ g).
(2) F (1X) = 1F (X).

A contravariant functor is defined in the same way except that the directions of
arrows are reversed so that F sends a morphism f ∶X → Y to

F (f) ∶ F (Y )→ F (X)

Thus, a contravariant functor F ∶ C → D is given by attaching an object F (X) in
D to every object X in C and by giving maps

F ∶ HomC(X,Y )→ HomD(F (Y ), F (X))

such that

(1) F (f) ○ F (g) = F (f ○ g).
(2) F (1X) = 1F (X).

If F is a functor C → D and G is a functor C → E then we write F ○G for their
composition.
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Example 9.13. The is a forgetful covariant functor Group→ Set which sends a
group G onto its underlying set and which sends a group homomorphism f ∶ G→
H onto f ∶ G→H viewed as a map of sets.

Example 9.14. Let f ∶ R → S be a homomorphism of rings. Then there is
a covariant functor f∗ ∶ ModS → ModR which sends an S-module M onto the
R-module with underlying set M and with R-action given by

r ⋅Rm ∶= f(r) ⋅S m, r ∈ R,m ∈M

Definition 9.15. Suppose that F,G ∶ C → D are two covariant functors. Then a
morphism α ∶ F → G of functors is a family of morphisms α ∶ F (X) → G(X) in
D for every object X in C such that the following diagram commutes

F (X) F (Y )

G(X) G(Y )

F (f)

α(X) α(Y )
G(f)

for every morphism f ∶ X → Y . One defines a morphism between contravariant
functors similarly.

This allows us to form the category Funco(C,D) whose objects are covariant
functors F ∶ C → D and whose morphisms are given by morphisms α ∶ F → G.
Similarly, one can define the category Funcontra(C,D) of contravariant functors.

Definition 9.16. Let F ∶ C → D be a covariant functor.

(1) F is essentially surjective if for every object X in D there exists an object
Y in C and an isomorphism f ∶ F (Y )→X in D.

(2) F is fully faithful if F ∶ HomC(X,Y ) → HomD(F (X), F (Y )) is an iso-
morphism for every pair of objects X,Y ∈ C.

(3) A functor is an equivalence if it is essentially surjective and fully faithful.

Similarly for contravariant functors.

Lemma 9.17. A functor F ∶ C → D is an equivalence if and only if it admits a
quasi inverse, i.e. a functor G ∶ D → C such that

F ○G ≡ idD, F ○G ≡ idC

in Fun(D,D) and Fun(C,C).

10. Some categorical constructions

Many constructions we are used to in sets, groups, rings, etc. can be formulated
for categories. However, in a general category objects need not be sets so one
cannot necessarily manipulate with elements. Instead, one makes constructions
via a universal property. We have already seen an example of this for inverse
limits:
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Recollection 10.1. The inverse limit lim←ÐXα over a directed set I satisfies the

following universal property : If Y is a set equipped with maps pα ∶ Y → Xα for
each α ∈ I such that

pα′ = fα,α′ ○ pα
whenever α′ ≤ α then there is a unique map p ∶ Y → lim←ÐXα such that pα is the

composite Y → lim←ÐXα →Xα.

This allows us to make sense of the notion of an inverse limit to any category.
In fact one make an even more general definition if one replaces the directed set
(recall we defined this as a partially ordered set for which any finite collection of
elements admitted a common upper bound) with just a partially ordered set. In
this case we obtain the notion of a limit:

Definition 10.2. Let I be a partially ordered set and C a category. Let (Xα, fα,α′)
be an inverse system over I, i.e. a collection of objects Xα in C and a collection
of morphisms fα,α′ ∶Xα →Xα′ whenever α

′ ≤ α such that fα,α = 1Xα and

fα′,α′′ ○ fα,α′ = fα,α′′

whenever α′′ ≤ α′ ≤ α. Then the limit lim←ÐXα is an object of C admitting mor-

phisms fα ∶ lim←ÐXα →Xα such that

fα,α′ ○ fα = fα′

for every α′ ≤ α, and which is universal for this property in the following sense:
if Y is an object of C admitting morphisms yα ∶ Y →Xα with

fα,α′ ○ yα = yα′

for all α′ ≤ α then there exists a unique morphism y ∶ Y → lim←ÐXα such that

y ○ fα = yα for every α.

We emphasise that the limit lim←ÐXα may not exist.

Exercise 10.3. Show that if lim←ÐXα exists then it is unique up to unique iso-

morphism, i.e. if X1,X2 both satisfy the universal property then there exists a
unique isomorphism X1 →X2 in C.

Clearly the notion of a limit encapsulates the notion of inverse limits which
we say before. However, by allowing general partially ordered sets we also obtain
new constructions:

Exercise 10.4. Let I be a set with the discrete order, i.e. α ≤ α′ if and only if
α = α′. Then an inverse system over I is just a collection of objects indexed by
I. Show that in Set one has

lim←Ð
α∈I

Xα =∏Xα

Another particular example of a limit which is very important is the notion of
a fibre product.
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Definition 10.5. Let I = {x, y, z} be the partially ordered set with x ≤ y, x ≤ z
and no non-trivial order relations. Then an inverse system over I in a category
C consists of three objects X,Y,Z in C and a pair of morphisms

Y Z

X

f

g

The limit of this system (if it exists) is called the fibre product and is denoted

Y ×X Z = Y ×X,f,g Z
Exercise 10.6. Show that fibre product of two maps f ∶ Y → X and g ∶ Z → X
of sets exists in Set and is given by

Y ×X Z = {(y, z) ∈ Y ×Z ∣ f(y) = g(z)}
Most of the categories we will consider have objects consisting of sets equipped

with some additional data, e.g. the structure of a group, or a ring, or a topological
space. For these categories there is a forgetful functor into Set; it forgets this extra
data. We have already seen that the formation of inverse limits often commutes
with these operations. For example if Top is the category of topological spaces
with morphisms between continuous maps then the forgetful functor

F ∶ Top→ Set

commutes with the formation of inverse limits, i.e.

F (lim←ÐXα) = lim←ÐF (Xα)
Similarly for inverse limits of groups or topological groups. However for a general
functor F ∶ C → D there is only a morphism

F (lim←ÐXα)→ lim←ÐF (Xα)
which will not always be an isomorphism. Nevertheless, there is one useful con-
dition which ensures it is an isomorphism:

Proposition 10.7. Let F ∶ C → D be a functor and assume that F admits a left
adjoint G ∶ D → C, i.e. a functor for which there exist bijections

fX,Y ∶ HomC(X,G(Y ))→ HomD(F (X), Y )
which are functorial in the sense that if X → X ′ is a morphism in C then the
diagram

HomC(X,G(Y )) HomD(F (X), Y )

HomC(X ′,G(Y )) HomD(F (X ′), Y )

fX,Y

fX′,Y

commutes, and similarly for any morphism Y → Y ′. Then

F (lim←ÐXα)→ lim←ÐF (Xα)
is an isomorphism for any limit in C.
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Example 10.8. A left adjoint G to a forgetful map F ∶ C → Set can often be
constructed by setting G(X) equal to the object of C ”freely” generated by the
set X. For example, suppose C = Alg

R
. Then define G ∶ Set → Alg

R
by setting

G(X) equal to the polynomial ring

R[Tx]x∈X
and, for f ∶ X → Y a map of sets, setting F (f) ∶ R[Tx]x∈X → R[Ty]y∈Y equal to
the R-algebra homomorphism sending Tx ↦ Tf(x). It is easy to see that G is a
left adjoint to F .

11. Yoneda’s lemma

Every object X in a category C defines a covariant functor

hX ∶ C → Set

which on objects is given by hX(Y ) = HomC(X,Y ) and on morphisms sends
fY ∶ Y → Y ′ onto

hX(fY ) ∶ HomC(X,Y )
g↦fY ○gÐÐÐÐ→ HomC(X,Y ′)

If fX ∶ X → X ′ and fY ∶ Y → Y ′ are morphisms in C then we also obtain
commuting diagrams

hX′(Y ) hX′(Y ′)

hX(Y ) hX(Y ′)

hX(fY )

h↦h○fX h↦h○fX
hX′(fY )

(the commuting of the diagram comes down to associativity of composition). It
follows that these vertical maps define a morphism of functors

hX′ → hX

In other words X ↦ hX defines a contravariant functor

C → Ĉ ∶= Funco(C,Set)

Lemma 11.1 (Yoneda’s lemma). The functor hX ∶ C → Ĉ is essentially surjective
for every object X in C.

Proof. We have to show that the map

HomC(X,X ′)→ HomĈ(hX′ , hX)

which sends f ∶X →X ′ onto the morphism of functors hf ∶ hX′ → hX defined by

hX′(Y )
h↦h○f
ÐÐÐÐ→ hX(Y ), Y an object in C

is a bijection. For injectivity, suppose f, g ∶X →X ′ are morphisms with h○f = h○g
for every h ∈ HomC(Y,X) and every object Y in C. Then, taking X ′ = Y and
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h = 1X′ , it follows that f = g. For surjectivity, suppose α ∶ hX′ → hX is a
morphism of functors. Then, for any fY ∶ Y → Y ′ we have a commuting diagram

hX′(Y ) hX′(Y ′)

hX(Y ) hX(Y ′)

g↦fY ○g

α(Y ) α(Y ′)
g↦fY ○g

Now take Y = X ′ so that fY ∶ X ′ → Y ′ ∈ hX(Y ′) and consider the image of 1X′
around this diagram. This gives

α(Y ′)(fY ) = α(Y ′)(1X′ ○ fY ) = α(X ′)(1X′) ○ fY
Therefore α(Y ′) = hα(X′)(1X′) which proves surjectivity. □

Definition 11.2. We say that a pair (X, ι) represents a covariant functor F ∶
C → Set if

ι ∶ F → hX

is an isomorphism of functors in Ĉ.

Lecture 7

12. Representable functors

Recall from last time that if C is a category and X is an object of C then there
is a functor

hX ∶ C → Set

given by hX(Y ) = HomC(X,Y ).

Definition 12.1. A functor F ∶ C → Set is representable if there exists an object
X in C and an isomorphism of functor

u ∶ hX
∼Ð→ F

We say that F is represented by (F,u).

Recall that having an isomorphism of functors u ∶ hX ≅ F is the same as having,
for every object Y in C, bijections of sets

u ∶ (Y )HomC(X,Y )→ F (Y )
which are functorial in Y .

Proposition 12.2. For any functor F ∶ C → Set there is a bijection

HomFun(hX , F )
∼Ð→ F (X)

given by u↦ u(X)(1X).

Proof. An inverse is given by x ↦ ux where ux is the morphism of functors
ux(Y ) ∶ HomC(X,Y )→ F (Y ) given by ux(f) = F (f)(x). To check this is actually
an inverse involves the same calculations that we used to prove Yoneda’s lemma
last time. □
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Taking F = hY recovers Yoneda’s lemma.

Corollary 12.3. Let F ∶ C → Set be a functor. Then the following data is
equivalent.

(1) An isomorphism of functors hX ≅ F
(2) An object xuniv ∈ F (X) such that the map

HomC(X,Y )→ F (Y )

given by f ↦ F (f)(xuniv) is a bijection for every Y .

Thus we can also say that a functor F is represented by a pair (X,xuniv) with
xuniv ∈ F (X). Yoneda’s lemma implies this pair is unique up to isomorphism.

Example 12.4. Let F ∶ Ring → Set be the forgetful functor F (R) = R viewed as

a set. Then F is representable by the pair (Z[x], x) because for every ring R and
r ∈ R there exists a unique homomorphism of rings f ∶ Z[x]→ R with f(x) = r.

Example 12.5. Let F ∶ Ring → Set be the functor F (R) = R× (units in R).

Then F is represented by the pair (Z[x,x−1], x) because for every ring R and
r ∈ R× there exists a unique homomorphism f ∶ Z[x,x−1]→ R with f(x) = r.

Example 12.6. Let f ∈ Z[x] be a polynomial and consider the functor F ∶
Ring → Set given by F (R) = {x ∈ R ∣ f(x) = 0}. Then F is represented by the
pair

(Z[x]/(f(x)), x)
because for every r ∈ R with f(r) = 0 there exists a unique ring homomorphism
Z[x]/(f(x))→ R with x↦ r.

Example 12.7. Let f(x) ∈ Z[x]. Then the functor F ∶ Ring → Set given by

F (R) = {r ∣ f(r) ∈ R×} is representable by

(Z[x, 1

f(x)
], x)

Exercise 12.8. Let f1, . . . , fn, g1, . . . , gp ∈ Z[x1, . . . , xm]. Show that the functor
F ∶ Ring → Set with

F (R) = {(x1, . . . , xm) ∈ Rm ∣ fi(x1, . . . , xm) = 0, gj(x1, . . . , xm) ∈ R× for all i, j}

is representable.

Example 12.9. Here is an example of a functor which is not representable. Let
F ∶ Ring → Set be given by F (R) = {x ∈ R ∣ x = y2 for some y ∈ R}. Then F is not

representable. To see this suppose F was represented by (X,x2) with x2 = x21.
Then for every ring R with a square r there exists a unique homomorphism
f ∶ X → R with r = f(x2). If R = Z[x] and r = x2 then we can compose f with
the automorphism σ of Z[x] given by x↦ −x to obtain f ′ ∶X → R with r = f ′(x2).
Hence f ′ = f . However, f(x1) = ±x and so f ′(x1) = ∓x which contradicts the fact
that f ′ = f .
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Example 12.10. Let R be a complete local ring and let C denote the category
of complete local R-algebras. Then the functor F ∶ C → Set given by F (A) = mA

the maximal ideal in A is represented by

(R[[x]], x)

because for every complete local R-algebra A and every m ∈ mA there is a unique
homomorphism f ∶ R[[x]]→ A of R-algebras such that f(x) =m.

Example 12.11. Here is a less useful example. Let Topop be the opposite cate-
gory of topological spaces and consider the functor

Topop → Set

sending a topological space (X,TX) onto TX (i.e. the set of open subsets). Then
this is representable by the topological space X = {0,1} with topology given by
{∅,{1},{0,1}}. Indeed, the map

Hom(Y,X)→ TY

given by f ↦ f−1({1}) has inverse sending U ∈ TY onto the characteristic function
of U .

Exercise 12.12. Let R be a ring such that hR(k) = HomRing(R,k) is a finite set

for every field k. Show that R is Artinian.

The following is a toy example of the kind of functors we will be interested in.
Let G be a finite group and for n ≥ 1 consider the functor

Rep◻G ∶ Ring → Set

which sends a ring R onto the set of homomorphisms G → GLn(R), i.e. the set
of R-representations of G.

Lemma 12.13. This functor is representable by a quotient RG of Z[x1, . . . , xN ]
for some N ≥ 0.

Proof. Write G = {g1, . . . , gd} and set SG = Z[Xij
l ] for 1 ≤ l ≤ d and 1 ≤ i, j ≤ n2.

Define a map

ρ̃ ∶ G→ GLn(SG)

by gl ↦ (Xij
l )ij . Set I ⊂ SG equal the ideal whose elements are generated by

the entries of ρ̃(g)ρ̃(g′)ρ̃(gg′)−1 for every g, g′ ∈ G and RG = SG/I. Then the
composite

ρuniv ∶ G
ρ̃
Ð→ GLn(SG)→ GLn(RG)

is a homomorphism. The pair (RG, ρuniv) represents Rep◻G because any homomor-

phism ρ ∶ G→ GLn(R) produces a homomorphism SG → R given by Xij
l ↦ ρ(gl)ij

and since ρ is a homomorphism I is contained in the kernel of this homomorphism
we obtain an induced homomorphism RG → R. □
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Next we take a field k and ρ ∶ G → GLn(k). Let C denote the category of
complete local rings with residue field k whose morphisms are maps R → S for
which

R S

k

commute. Then we can consider the functor of deformations

D◻ρ ∶ Ring /R → Set

which sends A onto the set of ρ′ ∈ Rep◻G(A) for which the composite

G
ρ′

Ð→ GLn(A)→ GLn(A/mA)
equals ρ.

Proposition 12.14. Let xρ ∶ RG → k be the homomorphism corresponding to
ρ and let mρ be the kernel. Assume xρ is surjective. Then the functor D◻ρ is
representable by

R̂G = lim←ÐRG/m
n
ρ

Proof. Let A be a complete local ring with residue field k. For any f ∶ RG → A
write ρf ∶ G→ GLn(A) for the corresponding representation. Then

ρf ∈D◻ρ (A)⇔ RG → A→ A/mA equals xρ⇔ mA ⊃ mA

Therefore, if ρf ∈ D◻ρ (A) then m-adically completing RG → A gives R̂G → Â =
A. Conversely, for any morphism R̂G → A in C the composite RG → R̂G → A
corresponds to an element of D◻ρ . Therefore

D◻ρ ≅ HomC(R̂G,A)
which proves the claim. □

Lecture 8

13. Framed deformations of a profinite group

Let G be a profinite group and k a finite field of characteristic p and recall the
ring of Witt vectors W (k), i.e. the unique complete discrete valuation ring with
residue field k and maximal ideal generated by p.

Definition 13.1. Let C denote the category of complete Noetherian local W (k)
with residue field k whose morphisms are ring homomorphisms R → S such that

R S

k

commutes. For any A ∈ C we write mA for the maximal ideal in A.
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Definition 13.2. For any object A in C a framed A-representation of G is a
continuous homomorphism

ρ ∶ G→ GLn(A)
Here we equip Matn×n(A) ≅ An×n with the mA-adic topology and GLn(A) with
the subspace topology.

Lemma 13.3. Let ρ ∶ G → GLn(A) be a homomorphism with A ∈ C. Then the
following are equivalent:

(1) ρ is continuous

(2) For every n ≥ 1 the composite ρm ∶ G
ρ
Ð→ GLn(A) → GLn(A/mm

A ) factors
through a finite quotient of G.

Proof. If ρ is continuous then so is ρm and hence the preimage of 1 ∈ GLn(A/mm
A )

is open in G and therefore has finite index. For the converse, condition (ii) implies
that each ρm is continuous. Since

GLn(A) = lim←Ð
m

GLn(A/mm
A )

the universal property of the inverse limit produces a continuous homomorphism
lim←Ðρm ∶ G → GLn(A) which coincides with ρ modulo mm

A for every m ≥ 0. It

follows these homomorphisms are equal.
□

Definition 13.4. Let ρ ∶ G → GLn(k) be a framed representation of G. For
every A ∈ C set

D◻ρ (A) = {framed representations ρ ∶ G→ GLn(A) ∣ G
ρ
Ð→ GLn(A)→ GLn(F) = ρ}

Then A↦D◻ρ defines a functor D◻ρ ∶ C → Set.

Theorem 13.5. Assume that every open subgroup G0 ⊂ G satisfies the following
p-finiteness condition:

● There are only finitely many continuous homomorphisms G0 → Fp.
Then D◻ρ ∶ C → Set is representable by a quotient ofW (k)[[X1, . . . ,XN ]] for some
N ≥ 0.

Before giving the proof we need to discuss the relevance of the p-finiteness
condition.

Definition 13.6. A finite group is a p-group if its cardinality is a power of p. A
profinite group is pro-p if every finite quotient is a p-group.

Definition 13.7. The pro-p-completion G(p) of a profinite group G is defined
as lim←ÐU G/U where U runs over all open normal subgroups for which G/U is a

p-group. The natural map G → G(p) is surjective and every continuous homo-
morphism G→H with H a pro-p-group factors through G(p).

Lemma 13.8. The following are equivalent:

(1) The are only a finite number of continuous homomorphisms G→ Fp.
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(2) G(p) is topologically finitely generated, i.e. there exists γ1, . . . , γn ∈ G(p)
which generate a dense subgroup of G.

Proof. We can assume that G = G(p) and so G is pro-p. For any profinite group
let Φ(G) denote the intersection of all maximal proper open subgroups in G. The
quotient of a p-group by a maximal proper subgroup must be isomorphic to Fp
and so the same is true for any pro-p group. Hence G/Φ(G) is an inverse limit of
abelian groups isomorphic to Fp. This shows that G/Φ(G) is an Fp-vector space.
Condition (1) is therefore equivalent to asking that G/Φ(G) is finite.

If γ1, . . . , γn topologically generate G then their images generate G/Φ(G) and
so G/Φ(G) must be finite. For the converse, choose γ1, . . . , γn in G whose images
generate G/Φ(G). Set H equal to the closure of the subgroup generated by
γ1, . . . , γn. If H ≠ G then we can find a maximal open proper subgroup H ⊂
H ′ ⊂ G. But also Φ(G) ⊂ H ′, which contradicts the fact that the closure of the
subgroup generated by H and Φ(G) is G. □

Proposition 13.9. Suppose that G satisfies the p-finiteness condition. Then
there exists a closed subgroup H ⊂ G such that G/H is topologically generated
and every ρ ∶ G→ GLn(A) factors through G/H.

Proof. Set G0 = kerρ. If ρ ∈D◻ρ (A) then ρ∣G0 ∶ G0 → GLn(A) factors through K1

where Ki for i ≥ 1 are defined by

Ki = ker (GLn(A)→ GLn(A/mi
A))

Note that the Ki for i ≥ 1 form a basis of open neighbourhoods of K1 and that
X ↦ 1 −X defines a bijection

Ki/Ki+1 ≅Matn×n(mi
A/mi+1

A )

This shows that K1 is a pro-p-group and so ρ′∣G0 ∶ G0 → GLn(A) factors through
G
(p)
0 . Let H0 = ker(G0 → G

(p)
0 ) and set

H = ⋂
g∈G/G0

gH0g
−1

Note that since H0 is normal in G0 the subgroup gH0g
−1 only depends upon the

class of g in G/G0, so this intersection makes sense. We also see that H is normal
in G because if g′ ∈ G then

g′Hg′−1 = ⋂
g∈G/G0

g′gH0g
−1g′−1 = ⋂

g′′∈G/G0

g′′H0g
′′−1 =H

Lastly, since G/G0 is finite the intersection is finite and so H is closed in G
and open in H0. From the exact sequence 1 → H0/H → G0/H → G0/H0 → 0
and the fact that G0/H0 is topologically finitely generated we see that G0/H
is topologically finitely generated. The upshot is that every ρ ∈ D◻ρ (A) factors
through G/H for H an open normal subgroup with G/H topologically finitely
generated, as required. □



32 DEFORMATION THEORY OF GALOIS REPRESENTATIONS NOTES

Lecture 9

14. Representing framed deformations

We continue the discussion from the previous lecture. Recall we fixed k a finite
field and denoted C the category of complete local Noetherian rings with residue
field k. Morphisms are homomorphisms inducing the identity on k. We also write
C0 for the full subcategory of C whose objects are Artinian. Recall, every object
of C is a W (k)-algebra. For any profinite group G and ρ ∶ G → GLn(k) we have
the functor

D◻ρ ∶ C → Set

sending a ringA onto the set of homomorphisms ρ ∶ G→ GLn(A) whose composite
G → GLn(A) → GLn(k) equals ρ. We saw before that D◻ρ is representable when
G is a finite group.

Lemma 14.1. Suppose G is finite and generated by g1, . . . , gm, and (R◻ρ , ρ
univ)

represents D◻ρ . Then R◻ρ is generated over W (k) by the entries of ρuniv(gl) for
l = 1, . . . ,m.

Proof. Let S be the subring of R◻ρ generated by the entries of the ρuniv(gl). Then
ρuniv ∶ G→ GLn(R◻ρ ) factors through GLn(S). By the universality of (R◻ρ , ρ

univ)
there must be a unique homomorphism s ∶ R◻ρ → S giving ρuniv ∶ G → GLn(S).
Moreover, the composite

s′ ∶ Rρ
sÐ→ S → Rρ

must be the identity since s′ ○ ρ = ρ. Therefore s(r) = r for every r ∈ Rρ and so
S = Rρ. □

Recall C0 ⊂ C is the full subcategory whose objects are Artinian.

Definition 14.2. Consider a pair (R,ρ) with R a local W (k)-algebra with
residue field k and ρ ∶ G → GLn(R) a continuous homomorphism whose com-
posite G → GLn(R) → GLn(k) equals ρ. Then we say (R,ρ) pro-represents D◻ρ
if the map

Hom(R,A)→D◻ρ

given by f ↦ G
ρ
Ð→ GLn(R)→ GLn(A) is a bijection for every A ∈ C0.

Lemma 14.3. Suppose that R ∈ C and (R,ρ) pro-represents D◻ρ . Then (R,ρ)
represents D◻ρ .

Proof. Obviously if (R,ρ) is a representing pair then they also pro-represent.
For the converse, suppose A ∈ C and ρA ∈ Dρ(A). Set ρA,i ∶ G → GLn(A) →
GLn(A/mi

A). Then for each i there exists a unique homomorphism fi ∶ R → A/mi
A

so that ρA,i equals the composite

G
ρ
Ð→ GLn(R)→ GLn(A/mi

A)
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In particular we see that R
fiÐ→ A/mi

A → A/mi+1
A equals fi+1. Since A is mA-

adically complete we have A = lim←ÐA/m
i
A and so the fi produce a homomorphism

R → A with the property that the composite

G
ρ
Ð→ GLn(R)→ GLn(A)

is ≡ ρA modulo mi
A for every i ≥ 0. In other words, this composite equals ρA

whose proves that (R,ρ) represents D◻ρ . □

Proposition 14.4. Let G be a profinite group. Then D◻ρ is pro-representable by

a pair (R,ρ).

Proof. Write G = lim←ÐU G/U for open normal subgroups U ⊂ G with U ⊂ kerρ.

This means that ρ ∶ G→ GLn(k) factors through

ρU ∶ G/U → GLn(k)

For each U let (RU , ρU) be the pair representing D◻ρU . Note that if U ⊂ U ′ then
we can view ρU ′ ∶ G/U ′ → GLn(RU ′) as a representation ρU ′ ∶ G/U → G/U ′ →
GLn(RU ′). Therefore, we obtain homomorphisms

RU → RU ′

such that ρU ′ is obtained as the composite

G/U ′ → G/U
ρUÐ→ GLn(RU)→ GLn(RU ′)

This allows us to define a homomorphism

ρ ∶ G→ lim←ÐGLn(RU) = GLn(lim←Ð
U

RU)

Set R = lim←ÐU RU . We claim (R,ρ) pro-represents D◻ρ . To see this take A ∈ C0

and suppose ρA ∈D◻ρ (A). Since A is Artinian the group GLn(A) is finite and so

ρA factors through G/U for some open normal U ⊂ G. Therefore, we obtain a
homomorphism RU → A such that

G
ρUÐ→ GLn(RU)→ GLn(A)

equals ρA. Hence ρA is the image of R → RU → A under the map

Hom(R,A)→D◻ρ (A)

This shows surjectivity. For injectivity suppose f1, f2 ∶ R → A are such that

xi ∶ G
ρ
Ð→ GLn(A)

fiÐ→ GLn(A) are equal. We can choose an open normal U ⊂ G
such that x1, x2 both factor through G/U . Therefore both f1, f2 factor through
R → RU and since RU represents D◻ρU it follows that f1 = f2. □

Proposition 14.5. Suppose that G is topologically finitely generated. Then D◻ρ
is representable by a quotient of a power series ring over W (k).
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Proof. Let (R,ρ) be the pro-representing pair from the previous proposition. We
claim that if g1, . . . , gm topologically generate then R is generated over W (k) by
the entries of ρuniv(gl). Let S ⊂ R be the subring they generate. Note that S is a
quotient of a power series ring over W (k). Therefore (the additive group of) S is
profinite and so, since each RU is complete and hence Hausdorff for the mU -adic
topology, to show that S = R it suffices to show S → R → RU is surjective for
every U (see Lemma 1.12). But g1, . . . , gn topologically generate G if and only if
their images generate G/U for every open normal subgroup U ⊂ G. The claimed
surjectivity therefore follows from Lemma 14.1. □

This finishes the proof of Theorem 13.5 from the previous lecture.

15. Tangent spaces

Definition 15.1. Let F ∶ C0 → Set be a functor. The tangent space of F is
defined as

F (k[ϵ])
where k[ϵ] = k[ϵ]/(ϵ2).

Proposition 15.2. There are following sets are in bijection:

(1) D◻ρ (k[ϵ])
(2) The set Z1(G,End(ρ)) of 1-cocycles, i.e. functions f ∶ G → Matn×n(k)

such that f(gh) = ρ(g)f(h) + f(g)ρ(h) for all g, h ∈ G.
(3) The set of homomorphisms ρ ∶ G→ GL2n(k) of the form

ρ(g) = (ρ(g) F (g)
0 ρ(g))

for some F (g) ∈Matn×n(k).
(4) Homk(mR/m2

R + pR, k) for mR the maximal ideal in a pro-representing
pair (R,ρ) of D◻ρ .

Furthermore, the natural k-vector space structures on the sets in (2) and (4)
coincide under these bijections.

Proof. Note that a map G→ GL2n(k) given by

g ↦ (ρ(g) F (g)
0 ρ(g))

is a homomorphism if and only if

(ρ(g) F (g)
0 ρ(g))(

ρ(h) F (h)
0 ρ(h)) = (

ρ(gh) ρ(g)F (h) + F (h)ρ(g)
0 ρ(gh) ) = (ρ(gh) F (gh)

0 ρ(gh))

i.e. if and only if F (gh) = ρ(g)F (h)+F (h)ρ(g). Therefore the bijection between
the sets in (2) and (3) is given by f ∈ Z1(G,ρ) onto the homomorphism

g ↦ (ρ(g) f(g)
0 ρ(g))
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For the bijection between the sets in (1) and (2) notice that there every element
of GLn(k[ϵ]) can be written as

g + ϵF
with g ∈ GLn(k) and F ∈ Matn×n(k). Therefore, if ρ ∈ D◻ρ (F[ϵ]) we can write

ρ(g) = ρ(g) + ϵFρ(g) for some function Fρ ∶ G →Matn×n(k). The fact that ρ is a
homomorphism is equivalent to

(ρ(g) + ϵFρ(g))(ρ(h) + ϵFρ(h)) = ρ(gh) + ϵFρ(gh)

i.e. that Fρ(g)ρ(h)+ρ(g)Fρ(h) = Fρ(gh). Hence ρ↦ Fρ gives a bijection between
D◻ρ (k[ϵ]) and Z

1(G,ρ).
Finally, we give a bijection between D◻ρ (k[ϵ]) and mR/(m2

R+pR). By definition
of pro-representability we have

D◻ρ (k[ϵ]) = Hom(R,k[ϵ])

where the homomorphism on the right are those inducing the identity on residue
fields. Any such homomorphism f must send mR onto the maximal ideal (ϵ) of
k[ϵ] and p onto zero, and so induces a map mR/(m2

R + pR) → (ϵ) = k of k-vector
spaces. Conversely, given a map f ∶ mR/(m2

R + pR)→ k of k-vector spaces we can
define a homomorphism R → k[ϵ] by r ↦ r + ϵf(r − [r]) where [⋅] denotes the
Teichmuller lifting k →W (k). □

Exercise 15.3. Check that the natural k-vector space structures on Z1(G,ρ)
and Hom(mR/(m2

R + pR), k) coincide whenever (R,ρ) pro-represents D◻ρ .

Proposition 15.4. If G satisfies the p-finiteness condition, i.e. if Hom(G0,Fp)
is finite for every open subgroup G0 ⊂ G then

D◻ρ (k[ϵ])

is finite.

Proof. We show that Z1(G,ρ) is finite. Take G0 = ker rho. Then the restriction
of any f ∈ Z1(G,ρ) to G0 is a homomorphism

G0 →Matn×n(k)

If this restriction is the zero function then F induces a well defined function
G/G0 →Matn×n(k) which we can view as an element of Z1(G/G0, ρ). Therefore,
we can an exact sequence

0→ Z1(G/G0,Matn×n(k))→ Z1(G,Matn×n(k))→ Hom(G0,Matn×n(k))

The left hand term is finite since G/G0 and Matn×n(k) are both finite. The p-
finiteness hypothesis implies the right most term is also finite. Hence Z1(G,ρ) is
finite as claimed.

For another proof note that if G satisfies the p-finiteness condition then D◻ρ is

pro-represented by a Noetherian local ring R and hence mR/m2
R is finite dimen-

sional. □
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Lecture 10

Useful references

● Gouvea’s ”Galois deformation theory“ notes, Lecture 3

16. Unframed deformations

Maintain the notation from the previous lecture. Thus

● G is a profinite group and j is field
● C is the category of complete local Noetherian rings with residue field k
and morphisms are ring homomorphisms compatible with the map into k
● C0 is the full subcategory of C of Artinian rings

Definition 16.1. Let ρ ∶ G → GLn(k) be a continuous homomorphism. Then,
for A ∈ C, define

Dρ(A) =D◻ρ (A)/ ∼

where ∼ denotes the following equivalence relation on Dρ(A)◻: we have ρ1 ∼ ρ2
if and only if there exists

h ∈ ker (GLn(A)→ GLn(k))

such that ρ1(g) = h ○ ρ2(g) ○ h−1 for all g ∈ G.

Lemma 16.2. Dρ ∶ C → Set is a functor.

Proof. Suppose ρ1, ρ2 ∈ D◻ρ (A) represent the same element of Dρ(A) so that

ρ1(g) = hρ2(g)h−1 for all g ∈ G. If f ∶ A → B is a morphism in C then also
write f ∶ GLn(A) → GLn(B) for the induced map. Then f(ρi) = f ○ ρi and so
f(ρ1)(g) = f(h)f(ρ2)f(h)−1. Thus f(ρ1) and f(ρ2) represent the same element
in Dρ(A). □

If R is a local ring with residue field k and ρ ∶ G → GLn(R) is a continuous
homomorphism then we say (R,ρ) pro-represent Dρ if the map

Hom(R,A)→Dρ(A)

which sends f ∶ R → A onto the equivalence class of the compositeG
ρ
Ð→ GLn(R)→

GLn(A) is a bijection for every A ∈ C0. Note that if (R,ρ) pro-represent D◻ρ then

this pair does not represent Dρ because the map D◻ρ (A) → Dρ(A) is never a
bijection.

Lemma 16.3. If (R,ρ) pro-represent Dρ and R ∈ C then Dρ is represented by
(R, [ρ]) where [ρ] denotes the equivalence class of ρ in Dρ(R).

Proof. The key is to prove that Dρ is continuous, i.e. that

Dρ(A) = lim←Ð
i

Dρ(A/mi
A)
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for any A ∈ C. There is a natural map Dρ(A)→ lim←ÐiDρ(A/mi
A). For surjectivity,

an element of lim←ÐiDρ(A/mi
A) corresponds to a collection of ρi ∈ D◻ρ (A/m

i
A) and

Fi ∈ 1 +Matn×n(mA) such that

F −1i ρiFi ≡ ρi−1 modulo mi−1
A

Set F i =∏j>i Fj ∈ 1+Mat(mA) (note this infinite product converges by complete-
ness of A). Then

F iρi(F i)−1 ≡ (F i)Fiρi−1F−1i (F i+1)−1 = F i−1ρi−1(F i−1)−1 modulo mi−1
A

so ρ′i ∶= F iρi(F i)−1 is a compatible sequence lim←ÐD
◻
ρ (A/mi

A) which gives ρ ∈ D◻ρ
whose equivalence class in Dρ maps onto our systems of classes in lim←ÐiDρ(A/mi

A).
For injectivity, suppose ρ1, ρ2 ∈D◻ρ (A) define the same equivalence class mod-

ulo mi
A for every i. Then there exist Fi ∈ 1+Matn×n(mi

A) such that Fiρ1F
−1
i ≡ ρ2

modulo mi
A for all i. If F = ∏i≥1 Fi ∈ 1 +Matn×n(mA) then Fρ1F

−1 = ρ2 so
[ρ1] = [ρ2] in Dρ(A). □

Definition 16.4. For ρ ∈D◻ρ (A) set

CA(ρ) ∶= {P ∈Matn×n(A) ∣ Pρ(g) = ρ(g)P for all g ∈ G}
The set CA(ρ) controls how well behaved Dρ is.

Theorem 16.5 (Mazur, Ramakrishna). If Ck(ρ) = k then Dρ is pro-representable.
If G satisfies the p-finiteness condition then Dρ is representable.

17. Schlessinger’s Criterion

Recall that if A1
f1Ð→ A

f2←Ð A2 are morphisms in C then we can form the fibre
product

A1 ×A A2 = {(r1, r2) ∈ R1 ×R2 ∣ f(x1) = f(x2)}

Lemma 17.1. For A ∈ C we have

Hom(R,A1 ×A A2) = Hom(R,A1) ×Hom(R,A) Hom(R,A2)

Proof. This is an easy exercise. □

This implies that if Dρ is representable then

Dρ(A1 ×A A2) =Dρ(A1) ×Dρ(A)Dρ(A2)

for every diagram A1
f1Ð→ A

f2←Ð A2 in C. In fact this is essentially the only
necessary condition

Theorem 17.2 (Grothendieck). Let F ∶ C0 → Set be a functor with F (k) = {∗}.
Then F is pro-representable if and only if the natural map

(17.3) F (A1 ×A A2)→ F (A1) ×F (A) F (A2)

is a bijection for every diagram A1 → A ← A2 in C0. If F (k[ϵ]) is finite then F
is representable (i.e the pro-representing object is Noetherian).
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Unfortunately, this result is not so useful in general because it is hard to check
the fibre product condition for all objects in C0. Schlessinger’s criterion however
reduces checking the condition that F (A1 ×A A2) → F (A1) ×F (A) F (A2) is an
isomorphism to more simple collection of fibre products.

Definition 17.4. A morphism A → B in C0 is small if it is surjective and if its
kernel is killed by mA and one dimensional over A/mA = k.

Theorem 17.5 (Schlessinger’s Criterion). Let F ∶ C0 → Set be a functor with
F (k) = {∗}. Then F is representable if and only if the following conditions are
satisfied

(H1) If A2 → A is small then (17.3) is surjective.
(H2) If A = k and A2 = k[ϵ] then (17.3) is bijective.
(H3) F (k[ϵ]) is finite.
(H4) If A1 = A2 and the maps Ai → A are equal and small then (17.3) is

bijective.

Exercise 17.6. Use Schlesssinger’s criterion to give another proof of the repre-
sentability of D◻ρ .

Lets discuss how to use this to this result to prove that Dρ is representable
when Ck(ρ) = k. Let fi ∶ Ai → A be morphisms in C0 and define

A3 ∶= A1 ×A A2

Since D◻ρ is representable we know D◻ρ satisfies each of (H1), . . . , (H4).

Exercise 17.7. Suppose that f2 ∶ A2 → A is surjective. Then

1 +Matn×n(mA2)→ 1 +Matn×n(mA)
is surjective.

Lemma 17.8. The map (17.3) is surjective whenever A2 → A is surjective. In
particular, Dρ satisfies (H1)

Proof. By the previous exercise this implies

1 +Matn×n(mA2)→ 1 +Matn×n(mA)
is surjective. Now suppose [ρi] ∈Dρ(Ai) for i = 1,2 are equivalence classes which
become equal in Dρ(A). Then there exists F ∈ 1 +Mat(mA) such that

f1 ○ ρ1 = F (f2 ○ ρ2)F−1

By the above surjectivitiy we can choose F̃ ∈ 1 +Matn×n(mA2) mapping onto

F . This means the representations ρ1 and F̃ ρ2F̃
−1 become equal when mapped

into GLn(A). Hence (ρ1, F̃ ρ2F̃−1) comes from an element D◻ρ (A3) and so also

([ρ1], [ρ2]). □

We also need to consider when (17.3) is injective. For take ρi ∈ D◻ρ (Ai) and
set

Gi(ρi) = {F ∈ 1 +Matn×n(mAi) ∣ Fρi(g)F
−1 = ρi(g) for all g ∈ G}
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and similarly define G(ρ) for ρ ∈ D◻ρ (A). Note this is contained in Gi(ρi) is

contained in CAi(ρi).
Lemma 17.9. Suppose that the induced map

G2(ρ2)→ G(f2 ○ ρ2)
is surjective for every ρ2 ∈D◻ρ (A2). Then (17.3) is injective.

Proof. If (17.3) is not injective then there exist ρ, ρ′ ∈D◻ρ (A3) with images ρi, ρ
′
i ∈

D◻ρ (Ai) and Fi ∈ 1 +Matn×n(mAi) with

ρi = Fiρ′iF−1i
for i = 1,2. Considering the image in GLn(A) we get

F 1(f1 ○ ρ1)F
−1
1 = F 2(f2 ○ ρ2)F

−1
2

where F i is the image of Fi in Matn×n(A). Since f1 ○ ρ1 = f2 ○ ρ2 it follows

that F 1F
−1
2 ∈ G(f2 ○ ρ). By assumption we can lift this to an element H ∈

1 +Matn×n(mAi). Then we can consider

H2 =HF2 ∈ 1 +Matn×n(mA2), H1 = F1 ∈ 1 +Matn×n(mA1)
Both these matrices have image F 1 in 1 + Matn×n(mA) and so comes from a
matrix H3 ∈ 1 +Matn×n(mA3). We have

ρ =H3ρ
′H−13

since this is true after applying f1 and f2. Therefore [ρ] = [ρ′]. □

Corollary 17.10. Dρ satisfies (H2)

Proof. We just have to show that if A2 = k[ϵ] and A = k then G2(ρ2) → G(ρ) is
surjective. But G(ρ) is a single point so this is clear. □

Lemma 17.11. If G satisfies the p-finiteness hypothesis then Dρ(k[ϵ]) is finite.

Proof. Last time we saw that ifG satisfies the p-finiteness hypothesis thenD◻ρ (k[ϵ])
is finite. SinceDρ(k[ϵ]) is surjected on byD◻ρ (k[ϵ]) the same is true forDρ(k[ϵ]).

□

The last thing to check is (H4). This is where the assumption that Ck(ρ) = k
comes in.

Lemma 17.12. If Ck(ρ) = k then (H4) is satisfied.

Proof. We are going to show that CA(ρ) consists of scalar matrices. For this we
induct on the smallest integer such that mn

A = 0. If n = 0, i.e. if A = k, then
this is our hypothesis. In general we consider the surjection A → B = A/mn−1

A .
Note the kernel of this surjection killed by mA and is one dimensional over k. In
particular, it is generated by an element say t.

Now suppose c ∈ CA(ρ). By induction CB(ρ) consists of scalar matrices so we
can write c = b + tM for b a scalar matrix in A and M ∈Matn×n(k). We have

(b + tM)ρ(g) = ρ(g)(b + tM), g ∈ G
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Since b is scalar this implies Mρ(g) = ρ(g)M and so M ∈ Ck(ρ) = k. We conclude
that c is scalar which finishes the induction.

As a consequence we deduce that Gi(ρ2) also consists of scalar matrices in
1 +Matn×n(mA2). This shows that

Gi(ρ2)→ G(f2 ○ ρ2)
is surjective and hence that (17.3) is injective. As we’ve □

Lecture 11

18. Absolute irreducibility

Let G be a profinite group. In this section we briefly discuss the condition
Ck(ρ) = k for a continuous representation ρ ∶ G→ GLn(k) which ensured Dρ was
representable. Recall

Ck(ρ) = {M ∈Matn×n(k) ∣Mρ(g) = ρ(g)M for all g ∈ G}

Remark 18.1. If we view ρ as giving an action of G on the k-vector space kn then
Ck(ρ) identifies with Endk(ρ) i.e. the set of linear maps kn → kn which commute
with the action of G.

Example 18.2. (1) If ρ ∶ G→ GLn(k) is trivial then Ck(ρ) =Matn×n(k).
(2) Suppose ρ ∶ G→ GL2(k) is given by

ρ(g) = (χ1(g) c(g)
0 χ2(g)

)

If χ1(g) = χ2(g) then Ck(ρ) contains all all diagonal matrices so Ck(ρ) ≠
k. If χ1(g) ≠ χ2(g) for some g then Ck(ρ) is contained in the group of
upper triangular matrices.

Definition 18.3. We say that ρ is irreducible if there exists no proper non-zero
subspace of kn which is stable under the action of G induced by ρ. We say that
ρ is absolutely irreducible there exists no proper non-zero subspace of k

n
which

is stable under the action of G induced by the composite

G
ρ
Ð→ GLn(k)→ GLn(k)

Example 18.4. Here is an example of a irreducible representation which is not
absolutely irreducible. Let G be the cyclic group of order 4 with generator g
and assume that k does not contain a square root of −1. Then consider the
representation

ρ ∶ G→ GL2(k)

given by ρ(g) = (0 −1
1 0

). If k2 contains a non-zero proper subspace then this

must be generated by αe1 + βe2. for α,β ∈ k for e1, e2 ∈ k2 the standard basis.
Since it is stable there must be z ∈ k such that

ρ(g) ⋅ (αe1 + βe2) = −βe1 + αe2 = z(αe1 + βe2)
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Therefore zα = −β and zβ = α. If α ≠ 0 then α = zβ = z(−zα) = −z2α so z2 = −1
which is impossible. Similarly if β ≠ 0. This shows that ρ is irreducible. However
it is not absolutely irreducible because if z2 = −1 then

ρ(g) ⋅ (e1 + ze22) = z(e1 + ze2)

Lemma 18.5. If ρ ∶ G→ GLn(k) is absolutely irreducible then Ck(ρ) = k.

Proof. It is enough to show Ck(ρ) = k. If we view any M ∈ Ck(ρ) as an endo-

morphism of k
n
then M must be injective since the kernel if G-stable. Hence M

is an isomorphism. It follows that Ck(ρ) is a finite dimensional k-algebra. Any

such algebra over an algebraically closed field equals k so we are done. □

19. p-finiteness for local Galois groups

Let K be a finite extension of Qp and write GK = G(K/K) for K an algebraic
closure. The goal is to prove

Proposition 19.1. GK satisfies the l-finiteness condition for every prime l

Recall this means that Hom(G0,Fl) is finite for any open subgroup. Since any
G0 = GL for L/K a finite extension we reduce to showing finiteness of

Hom(GK ,Fl)

Note this is equivalent to showing that K admits only finitely many extensions
of degree l. Thus, the following version of Hilbert’s theorem 90 is useful:

Theorem 19.2 (Hilbert’s Theorem 90). Let l be a prime and suppose K is a
field of characteristic prime to l and containing a l-th root of unity. Then the
map

K×/(K×)l → {degree p extensions of K}

sending [a]↦K(a1/l) defines a bijection.

Proof of Proposition 19.1. We can prove the finiteness after adjoining an l-th root
of unity to K. Therefore, the theorem reduces us to showing that

K×/(K×)l

is a finite group. For this we recall the explicit description of K×. If we choose a
uniformiser π ∈K then

K× ≅ Z ×O×K
We can also write O×K = k× × (1 +mK). This reduces us to showing that

(1 +mK)/(1 +mK)p

is a finite group. For this look at the exact sequence

1→ (1 +mn
K)/(1 +mK)p → (1 +mK)/(1 +mK)p → Q→ 1
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Then Q is a quotient of (1 + mK)/(1 + mn
K) which is a finite group. So we are

reduced to showing finiteness of the first term for n >> 0. For this recall that the
logarithm map

1 + x↦ x − x
2

2
+ x

3

3
− . . .

defines an isomorphism between 1 +mn
K and mn

K for n sufficiently large. Thus

(1 +mn
K)/(1 +mK)p ≅ mn

K/pmn
K

which is a finite. □

Next we recall the structure of the Galois group GK . Let k denote the residue
field of K (which is a finite field of characteristic p). Recall that for every finite
extension l/k there exists a unique extension L/K for which π is a uniformiser of
L whenever π is a uniformiser of K. We say such L/K are unramified. This is
also equivalent to asking that the map natural map

G(L/K)→ G(l/k)
for l the residue field of L is an isomorphism. Set

Kur =⋃L

with the union running over finite unramified subextensions K ⊂ L ⊂ K. Then
Kur is normal and there is an exact sequence

1→ G(K/Kur)→ GK → G(Kur/K)→ 1

and G(Kur/K) ≅ G(k/k) ≅ Ẑ where k denotes the residue field of K which equals
an algebraic closure of k. We write

IK = G(K/Kur)
and call this the inertia subgroup of GK .

We can also partially describe the structure of IK . Using Hilbert’s Theorem
90 one can prove that

Claim. Fix a uniformiser π ∈ K. Then every degree n extension of Kur for n
prime to p can be written as

Kur
n =Kur(π1/n)

for π1/n an n-th root of π and G(Kur
n /Kur) ≅ µn(Kur).

As a consequence:

Corollary 19.3. Set
Kt =⋃Kur

n

with the union running over n prime to p. Then there is an isomorphism

G(Kt/Kur) ∼Ð→ lim←Ðµn(K
ur) ≅∏

l≠p
Zl

where µn(Kur) denotes the group of n-th roots of unity in Kur. This isomorphism
is given by

σ ↦ (σ(π1/n)π−1/n)n
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Define PK = G(K/Kt) which we call the wild inertia subgroup. Notice that
this is pro-p-group and we have exact sequences

1→ PK → IK →∏
l≠p

Zl → 1

and

1→ lim←Ðµn(K
ur)→ GK/PK = G(Kt/K)→ G(Kur/K)→ 1

Any compatible system (π1/n) of prime to p roots of a uniformiser π ∈K defines
the splitting of this latter exact sequence by sending σ ∈ G(Kur/K) onto the

automorphism of Kt = ⋃Kur(π1/n) which equals σ on Kur and maps π1/n onto

π1/n.

Proposition 19.4. The tame Galois group G(Kt/K) can be topologically gen-
erated by two elements σ, τ satisfying the relation

στσ−1 = τ q

where q denotes the cardinality of the residue field.

Proof. Choose a compatible sequence π1/n as above and suppose that σ ∈ G(Kt/K)
is the image under the induced splitting of the element in G(Kur/K) which acts
as x ↦ xq on the residue fields. Also, choose a generator in lim←Ðµn(K

ur), i.e. a

compatible system of primitive n-th roots of unity ζn. If n is prime to p then
σ(ζn) = ζqn and

τ(π1/n) = ζnπ1/n

Therefore στσ−1 ∈ G(Kt/Kur) sends

π1/n ↦ π1/n ↦ ζnπ
1/n ↦ ζqnπ

1/n

Since τ q sends π1/n ↦ ζqnπ
1/n these automorphisms coincide. □

20. p-finiteness for Global fields

Now suppose that K is a number field with absolute Galois group GK . It is
no longer the case that GK satisfies the p-finiteness condition. For example, the
Kronecker–Weber theorem asserts that

Gab
Q ≅ Ẑ

×

and so one can easily compute:

Exercise 20.1. Show that GQ does not satisfy the p-finiteness condition for any
prime p.

However, one can obtain p-finiteness if one restricts the ramification slightly.
Suppose L/K is a finite extension of number fields. Recall that for each prime
p of L lying over q in K we say that L/K is unramified at p if the extension of
local fields Lp/Kq is unramified.
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Fact 20.2. Let S be any finite set of primes in K. Then there exists a maximal
extension KS of K which is unramified over Q at any prime not contained in S.
This is a Galois extension and we set

GK,S = G(KS/K)
which is a quotient of GK .

Theorem 20.3. For any finite set GK,S satisfies the p-finiteness hypothesis.

The proof is more difficult. First one shows

Exercise 20.4. any open normal subgroup of GK,S can be written as GK′,S′ for
some finite extension K ′ of K and S′ some finite set of primes.

Thus the theorem reduces to showing that Hom(GK,S ,Fp) is finite. This follows
from the following important finiteness result:

Theorem 20.5. (Hermite–Minkowski) Let K be a finite extension of Q and S a
finite set of primes of K. For each integer d there exists finitely many degree d
extensions of K which are unramified outside S.

Lecture 12

21. Example: 1-dimensional local deformation rings

First we will compute deformation rings of one dimensional representations.
This will be easy granting results from class field theory:

Theorem 21.1 (Local class field theory). Let K be a finite extension of Qp with

maximal abelian extension Kab. There is an injective homomorphism

Θ ∶K× → G(Kab/K)
called the Artin map, fitting into a commutative diagram

0 O×K K× Z 0

0 G(Kab/Kur) G(Kab/K) G(Kur/K) 0

≅

v

Θ

v

The map Θ induces an isomorphism K̂× ≅ G(Kab/K).

Let ρ ∶ GK → GL1(F) for F a finite field for K a finite extension of Qp. Since
GL1(R) is abelian for every R ∈ C (i.e. for every complete local Noetherian ring
with residue field F) it follows that every ρ ∈D◻ρ (A) factors through G(K

ab/K).
Therefore

D◻ρ =D
◻
ψ

where ψ ∶ K̂× → GL1(F) is obtained by composing ρ with the Artin map Θ.
For one-dimensional representations one the following lemma reduces us to the

case of deforming the trivial representation
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Lemma 21.2. Suppose ρ ∶ G → GLn(F) and ψ ∶ G → GL1(F) are continuous.
Set

[ψ] ∶ G→ GL1(W (F)), [ψ](g) = [ψ(g)]
Then

ρ↦ ρ⊗ [ψ]
defines an isomorphism of functors between D◻ρ and D◻

ρ⊗ψ. In particular D◻ρ is

representable if and only if Dρ⊗ψ is.

Proof. This is clear. □

Lets consider the case of one dimensional deformations of GQp .

Lemma 21.3. There is an isomorphism

Q×p ≅ Z × F×p × (1 + pZp)

of profinite groups. Furthermore, if 1 + pZp is viewed as a Zp-module via

γ ⋅ (1 +X) = ∑
n≥0
(γ
n
)Xn

then 1 + pZp is free of rank one over Zp if p > 2 and is isomorphic to

{±1} ×Z2

for p = 2.

Proof. The map is given by Z × F×p × (1 + pZp)→ Q×p is given by

(n,x, y)↦ pn[x]y

For the claim regarding the Zp-module structure of 1 + pZp recall that the loga-
rithm and

log(1 +X) = ∑
n≥0

(−1)n+1Xn

n

converges on 1 + pZp for p > 2 and on 1 + 4Z2. □

Any deformation of the trivial representation factors through the maximal pro-
p-quotient of the group. In particular, deformations of the one dimensional trivial
representation of Q̂×p factor through

● Ẑ ×Zp if p > 2 and

● Ẑ ×Zp × {±1} is p = 2. Therefore

Corollary 21.4. Let ψ ∶ Q̂×p → GL1(F) be the trivial character. Then

(1) If p > 2
Rψ =W (F)[[x, y]]

is the universal deformation ring of ψ and the universal deformation sends

ψuniv ∶ p↦ [ψ(p)] + x, 1 + p↦ [ψ(1 + p)] + y
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(2) If p = 2

Rψ =
W (F)[[x, y, z]]
([ψ(−1)] + z)2 − 1

is the universal deformation ring of ψ and the universal deformation is
given by

ψuniv ∶ 2↦ [ψ(2)] +X, 1 + 4↦ [ψ(5)] + Y, −1↦ [ψ(−1)] + z)2

Actually, deformation rings of 1-dimensional representations can be described
in general using the following construction.

Definition 21.5. LetG be a profinite group. For any ring A define the completed
group ring

A[[G]] = lim←Ð
H

A[G/H]

with the limit taken over all open normal subgroups H ⊂ G and A[G/H] equal
to the usual group ring, i.e. the free A-module on the elements of G/H with
multiplication given by multiplication in G/H.

Lemma 21.6. Suppose that the ring is profinite. Then A[[G]] is the completion
of R[G] for its profinite topology.

Exercise 21.7. Suppose that A is a complete local Noetherian ring with finite
residue field. Then show that continuous homomorphisms ρ ∶ G → GLn(A) are
the same thing as continuous A-algebra homomorphisms A[[G]]→Matn×n(A).
Lemma 21.8. Suppose that k is a field of characteristic p and G is a finite
abelian p-group. Then k[G] is a local ring with maximal ideal generated by g − 1
for all g ∈ G.
Proof. We can write G = ⊕r

i=1Z/pai for some ai ≥ 1. If gi ∈ Z/pai are generators
then

k[G] ≅ k[g1, . . . , gr]/(Xpai
i − 1) = k[T1, . . . , Tr]/(T p

ai

i )
for Ti = gi − 1 (here we use that gp

ai

i − 1 = gp
ai

i because k has characteristic p. It
is easy to see this is local. □

Corollary 21.9. Suppose that Γ is an abelian pro-p-group. Then W (F)[[Γ]] is
a complete local ring with residue field F. The maximal ideal is generated by p
and g − 1 for all g ∈ Γ.

In particular this shows that

W (F)[[Zp]] ≅W (F)[[T ]]
via γ − 1↦ T for γ ∈ Zp any generator.

Proposition 21.10. Suppose that Γ is a pro-p abelian profinite group and that
ψ ∶ Γ→ GL1(F) is continuous. Then the pair (W (F)[[Γ]], ψuniv) where

ψuniv ∶ G→ GL1(W (F)[[Γ]])
is the continuous homomorphism given by g ↦ [ψ(g)]g (here the second g denotes
the element in W (F)[[Γ]]) represents the functor D◻

ψ
.
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Proof. Using the previous lemma we can assume that ψ is the identity. Then
any Ψ ∈ D◻

ψ
corresponds to a homomorphism G → 1 +mA. Extending by W (F)-

linearity produces a W (F)-algebra homomorphism W (F)[[Γ]] → A. Conversely,
given any W (F)-algebra homomorphism W (F)[[Γ]] → A which maps the maxi-
mal ideal of W (F)[[Γ]] into the maximal ideal of A produces a homomorphism
Γ → W (F)[[Γ]] → 1 + mA (note that maximal ideal of W (F)[[Γ]] is the ker-
nel of the map W (F)[[Γ]] → F induced by g ↦ 1 for all g ∈ Γ, in particular
Γ ⊂ 1 +mW (F)[[Γ]]. □

22. Example: Deformations of some two dimensional p-adic
representations

In this example we take F a field of characteristic p > 2 and consider deforma-
tions of representations of the form

ρ ∶ GQp → GL2(F), ρ(g) = (1 c(g)
0 1

)

for c(g) ∶ G → F a 1-cocycle. We’ve already seen that if ρ is trivial then any
deformation will factor through the maximal pro-p quotient. In fact:

Exercise 22.1. Note that the image of ρ is a p-group. Show this implies that
every deformation of ρ factors through the maximal pro-p quotient of GQp

Let G denote the maximal pro-p-quotient of G. We have already computed
the abelianisation of G, namely it was isomorphic Zp × (1 + pZp) (for p > 2).

Claim. Choose γ, δ ∈ G whose images in Gab respectively identify with (1,1 + p)
and (1,1). Then γ, δ freely generate G.

Proof. The fact that γ, δ generate G follows from the argument in Lemma 13.8.
The fact that γ, δ freely generate is a special case of a more general result we’ll
see later. □

As a consequence of this claim we deduce that the universal framed deformation
ring of ρ is

Rρ =W (F)[[x11, x12, x21, x22, y11, y12, y21, y2,2]]
and the universal deformation is ρuniv sends

γ ↦ (1 + x11 x12 + [c(γ)]
x21 x22

) , δ ↦ (1 + y11 y12 + [c(δ)]
y21 y22

)

23. Example: Deformations of n-dimensional trivial
representations

The discussion from the previous section generalises to any finite extension K
of Qp and any ρ ∶ GK → GLn(F) whose image is a p-group (as before F is assumed
to have characteristic p). In particular, when ρ is the trivial representation. This
requires a description of the maximal pro-p-quotient of GK which we denote GpK .

Using what we know already we can prove:
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Lemma 23.1. Set q equal to the cardinality of µp∞(K).
(1) GpK is topologically generated by d + 1 elements if q = 1 and d + 2 is q > 1.
(2) The abelianisation of GpK is freely generated as a pro-p-group by d + 2

elements g1, . . . , gd+2 with the single relation

gq1 = 1

Proof. The argument from Lemma 13.8 implies that any lift to GpK of a generating

set of Gp,abK generates GpK . Therefore, (2) implies (1). For (2) note that Gp,abK

equals the maximal pro-p-quotient of Gab
K ≅ K̂×. Hence

Gp,abK ≅ Zp × 1 +mK

As when K = Qp we can view 1+mK as a Zp-module. It is finitely generated and
its torsion part is µp∞(K). Hence

1 +mK = µp∞(K) ×Zrp
Using that 1 + mn

K ≅ mn
K via the logarithm for sufficiently large m we see that

1 +mK has Zp-rank [K ∶ Qp]. Since µp∞(K) is cyclic of order q this finishes the
proof □

Corollary 23.2. The deformation ring R◻
ψ

for any ψ ∶ GK → GL1(F) can be

expressed as

R◻
ψ
= W (F)[[X1, . . . ,Xd+2]]

(1 + x1)q − 1)
The more precise version is:

Theorem 23.3. (1) (Shafarevich) If q = 1 then GpK is a free pro-p-group of
rank [K ∶ Qp] + 1.

(2) (Demuskin) If q ≥ 3 then GpK is the quotient of a free pro-p-group on d+2
generators g1, . . . , gd+2 by the relation

gq1[g1, g2][g2, g3] . . . [gd+1, gd+2]

where [g, h] ∶= ghg−1h−1.

The case q = 2 has also been computed by Serre when [K ∶ Qp] is odd and
Labute when [K ∶ Qp] is even.

Corollary 23.4. Suppose ρ ∶ GK → GLn(F) has image a p-group. Then the
framed deformation ring R◻ρ can be expressed as:

R◻ρ =
⎧⎪⎪⎨⎪⎪⎩

W (F)[X1, . . . ,Xd+1] if q = 1
W (F)[[X1,...,Xd+2]]

((X1+I)q[X1+I,X2+I]...[Xd+1+I,Xd+2+I]−I) if q > 2

where each Xi is an n × n matrix of indeterminants.

Finally, we point out an interesting result. Note that for any ρ ∶ G → GLn(F)
there is a morphism of functors

D◻ρ →D◻detρ
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sending a deformation to its determinant (which is viewed as a 1-dimensional
representation). This induces a map on deformation rings:

R◻det(ρ) → R◻ρ

If G = GK for K/Qp finite and F of characteristic p then this map can be written
as

W (F)[[X1, . . . ,Xd+2]]
(1 + x1)q − 1)

→ R◻ρ

After inverting p and taking Spec the left hand side is a union of q components.
In fact a recent theorem (which Paskunas will talk about in the Mittagseminar
next week).

Theorem 23.5 (Böckle–Paskunas–Iyengar). This map induces an bijection

π0(SpecR◻ρ [
1

p
])→ π0(Spec

W (F)[[X1, . . . ,Xd+2]]
(1 + x1)q − 1)

[1
p
])

Here π0 indicates connected components.

Lecture 13

24. H1 and tangent spaces

For G a profinite group and ρ ∶ G→ GLn(F) a continuous homomorphism with
F a finite field recall that the tangent space of the functor D◻ρ is

D◻ρ (F[ϵ]), F[ϵ] = F[X]/(X2)

We shows thatD◻ρ (F[ϵ]) naturally identified with the group of 1-cocycles Z1(G,End(ρ))
consisting of continuous maps

f ∶ G→Matn×n(F)

such that f(gh) = ρ(g)f(h) + f(g)ρ(h) for all g, h ∈ G. Recall that the bijection
was given by the map Z1(G,End(ρ))→D◻ρ (F[ϵ]) which sends

f ↦ ρf = (g ↦ ρ(g) + ϵf(g))

where ρ(g) + ϵf(g) is viewed as an element in GLn(F[ϵ]).

Proposition 24.1. Let B1(G,End(ρ)) ⊂ Z1(G,End(ρ)) be the subspace consist-
ing of functions f ∶ G→Matn×n(F) with

f(g) = ρ(g)X −Xρ(g)

for some X ∈Matn×n(F). Then the map Z1(G,ρ)→D◻ρ (F[ϵ]) induces a bijection

Z1(G,End(ρ))
B1(G,End(ρ))

∼Ð→Dρ(F[ϵ])
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Proof. Consider two 1-cocycles f, f ′ and g ∈ G. An easy computation shows that
there exists 1 + ϵY ∈ 1 + ϵMatn×n(F) so that

(1 + ϵY ) (ρ(g) + ϵf(g)) (1 − ϵY ) = ρ(g) + ϵf ′(g)

if and only if

f(g) + Y ρ(g) − ρ(g)Y = f ′(g)
Therefore f − f ′ ∈ B1(G,ρ) if and only if the images of f and f ′ in D◻ρ (F[ϵ]) are
equivalent (i.e. represent the same element in Dρ(F[ϵ])). □

25. Cohomology of discrete G-modules

Let G be a profinite group and A a G-module, i.e. an abelian group A equipped
with an additive action of G.

Definition 25.1. A G-module is discrete if the action map G×A→ A is contin-
uous when A is given the discrete topology.

Exercise 25.2. Show that a G-module A is a discrete G-module if and only if
the stabliser in G of any element in A is an open subgroup if and only if A = ⋃AU
where U runs over open subgroups of G and AU denotes the subgroup of A fixed
by all elements in U .

Example 25.3. Let ρ ∶ G → GLn(R) be continuous with R ∈ C0 (i.e. R is an
Artinian local ring with finite residue field). Then ρ makes Rn into a discrete
G-module. This is because the mR-adic topology on R is the discrete topology
(as mn

R = 0 for n >> 0).

Warning 25.4. However, if R ∈ C (i.e. R is a complete local Noetherian local
ring with finite residue field) then Rn with the G-action induced by ρ need not
make Rn into a discrete module. This is not such a problem for us because we’ve
seen D◻ρ is entirely determined by its values on C0.

Now we show that our construction of H1(G,ρ) is the special case of a more
general construction. For any discrete G-module A set Cn(G,A) equal to the
abelian group of continuous maps Gn → A. Then one can define a coboundary
map

d ∶ Cn(G,A)→ Cn+1(G,A)
by the formula

(df)(g1, . . . , gn+1) = g1f(g2, . . . , gn+1)

+
n

∑
i=1
(−1)if(g1, . . . , gigi+1, . . . , gn+1)

+ (−1)n+1f(g1, . . . , gn)

This produces a complete

. . .→ Cn(G,A) dÐ→ Cn+1(G,A) dÐ→ Cn+2(G,A)→ . . .
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and one defines Hn(G,A) as the cohomology of this complex. In other words,
one defines

Hn(G,A) ∶= ker(Cn(G,A) dÐ→ Cn+1(G,A))

im(Cn−1(G,A) dÐ→ Cn(G,A))
For small n the Hn(G,A) can be described explicity:

(1) For n < 0 one has Hn(G,A) = 0.
(2) One has H0(G,A) = ker(C0(G,A) dÐ→ C1(G,A)). If a ∈ C0(G,A) = A

then d(a)(g) = g(a) − a. Therefore a ∈ H0(G,A) if and only if g(a) = a
for all g ∈ G. Hence H0(G,A) = AG.

(3) For n = 1 notice that any f ∈ ker(C1(G,A) → C2(G,A)) is a function
f ∶ G→ A such that

(df)(g1, g2) = g1f(g2) − f(g1g2) + f(g1) = 0

for all g1, g2 ∈ G. In other words, f(g1g2) = g1f(g2) + f(g1). We also see
that f ∈ Im(C0(G,A) → C1(G,A)) means that f(g) = ga − a for some
a ∈ A. Hence

H1(G,A) = {f ∶ G→ A ∣ f(gh) = f(g) + gf(h)}
{f ∶ G→ A ∣ f(g)ga − a for some a ∈ A}

Lemma 25.5. Let ρ ∶ G → GLn(F) be continuous and write End(ρ) for the
discrete G-module with underlying abelian group Matn×n(F) and G-action given
by conjugation with ρ(g). Then

ker(C1(G,End(ρ) dÐ→ C2(G,End(ρ))) = Z1(G,End(ρ))

and

H1(G,End(ρ)) = Z
1(G,ρ)

B1(G,ρ)
=Dρ(F[ϵ])

Proof. The first equality is given by the map

f ↦ (g ↦ f(g)ρ(g))

Since this identifies

im(C0(G,End(ρ)) dÐ→ C1(G,End(ρ))) = B1(G,End(ρ))

the first equality induces the second. □

26. Interpretation of H2 in terms of deformation theory

We’ve just seen the relevance of H1 with regards our deformation functor D◻ρ .
The second cohomology groups are also important. To explain this consider the
following setup. Let

A1 → A

be a small morphism in C0. Recall this means that it is surjective and the kernel is
killed by mA1 and is one-dimensional as an F = A1/mA1-vector space. This means
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that the kernel is generated by a single element say q. Then one can wonder
whether the map

D◻ρ (A1)→D◻ρ (A)

is surjective. In other words, can deformations to A be lifted to A1. We’ll see
later that if this is always the case then the corresponding deformation ring will
be as nice as possible (a power series ring). There is a cohomological critera for
liftings to exist:

Construction 26.1. Fix ρ ∈D◻ρ (A) and fix a set-theoretic mapping

ρ1 ∶ G→ GLn(A1)

which equals ρ after composing with GLn(A1) → GLn(A) and define c ∶ G2 →
Matn×n(F) by

c(g1, g2) = ρ1(g1g2)ρ1(g2)−1ρ1(g1)−1 − 1 ∈Matn×n(ker(A1 → A)) =Matn×n(F)

Exercise 26.2. Show that c(g1, g2) ∈ ker(C2(G,End(ρ)) dÐ→ C3(G,End(ρ))).

Suppose ρ′1 is another choice of lifting of ρ. Then

ρ′1 − ρ1 = F ∈ C1(G,Matn×n(kerA1 → A)) = C1(G,End(ρ))

Since the kernel of A1 → A is square-zero, one has

(ρ1(x) + F (x))−1 = (ρ1(x)−1 − ρ1(x)−1F (x)ρ1(x)−1) = (ρ1(x)−1 − ρ(x)−1F (x))

Therefore

c′(x, y) = (ρ1(xy) + F (xy))(ρ1(y)−1 − ρ(y)−1F (y)ρ(y)−1)(ρ1(x)−1 − ρ(x)−1F (x)ρ(x)−1)
= c(x, y) + F (xy)ρ(y)−1ρ(x)−1 − ρ(x)F (y)ρ(y)−1ρ(x)−1 − F (x)ρ(x)−1

= c(x, y) +G(xy) − ρ(x)G(y)ρ(x)−1 +G(x)
= c(x, y) + (dG)(x, y)

for G(x) ∶= F (x)ρ(x)−1. As a consequence this construction produces a well
defined element of H2(G,End(ρ)) which we denote by c(ρ).

Proposition 26.3. The deformation ρ is contained in the image of

D◻ρ (A)→D◻ρ (A)

if and only if c(ρ) = 0 in H2(G,End(ρ)). In particular, if H2(G,End(ρ)) = 0
then D◻ρ (A)→D◻ρ (A) is surjective for every small map A1 → A.

Proof. If ρ is in the image then we can choose ρ1 as in the definition so that ρ1 is a
homomorphism. Thus c = 0 and so c(ρ) = 0. Conversely, if c(ρ) = 0 we can choose
ρ1 so that the associated function c = 0. Therefore ρ1 is a homomorphism. □
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27. General tools to compute group cohomology

Long exact sequences. Suppose that 0 → A → B → C → 0 is a G-equivaraiant
exact sequence of discrete A-modules. Then one obtains an exact sequences

0→ Cn(G,A)→ Cn(G,B)→ Cn(G,C)→ 0

and hence an exact sequence of complexes

0→ C●(G,A)→ C●(G,B)→ C●(G,C)→ 0

(this is the definition of such an exact sequence).

Lemma 27.1. There exists an associated long exact sequence of cohomology
groups

. . .→H i(G,A)→H i(G,B)→H i(G,C) δÐ→H i+1(G,A)→ . . .

Proof. This follows by applying the snake lemma to the following diagram

Ci(G,A)/ imdi−1A Ci(G,B)/ imdi−1B Ci(G,C)/ imdi−1C 0

0 kerdiA kerdiB kerdiC

□

Sometimes this general formalism is enough. For example if you know the
H i(G,A) and H i(G,C) all vanish then this exact sequence gives vanishing of the
middle terms. But sometimes you really need to understand what this map δ
really is: here is the simplest example

Example 27.2. The map δ ∶ H0(G,C) → H1(G,A) can be defined as follows.
Take x ∈ CG =H0(G,C) and choose an element y ∈ B mapping onto x. Then

δ(x)(g) = gy − y

Change of group. Let G and G′ be two profinite groups, and let f ∶ G → G′

be a homomorphism. Suppose that A and A′ are respectively discrete G and
G′-modules and that h ∶ A→ A′ is a continuous map of abelian groups such that

h(gx) = f(g)h(x)
for g ∈ G,x ∈ A. Then one obtains a map of complexes

C●(G′,A′)→ C●(G,A)
and hence maps on cohomology

H i(G′,A′)→H i(G,A)
This construction is particularly useful when we consider the inclusion of a closed
subgroup H ⊂ G and when we take A = A′. This gives the restriction homomor-
phism

Res ∶H i(G,A)→H i(H,A)
(on functions it is just given by restriction). The following is particularly useful:
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Proposition 27.3. Suppose that H ⊂ G is open and that the index (G ∶ H) = n.
Then the kernel of Res is killed by n. In particular, if A is a p-group and (G ∶H)
is prime to p then the restriction map is injective.

Corollary 27.4. Suppose that G has order prime to p and the G-module A is a
p-group. Then H i(G,A) = 0 for i ≥ 1.

Proof. Applying the previous proposition with H = {1} shows that H i(G,A)
injects into H i({1},A). Since

H i({1},A) =
⎧⎪⎪⎨⎪⎪⎩

A if i = 0
0 if i > 0

it follows that H i(G,A) = 0 for i ≥ 1. □

Another useful tool for computing cohomology is the restriction–inflation exact
sequence. Let N ⊂ G be a closed normal subgroup and suppose A is a discrete
G-module.

Claim. There is an action of G/N on H i(N,A). For i = 1 (which is all we need)
this is induced by the action on 1-cocycles action

g ⋅ f(n) = gf(g−1ng)

Exercise 27.5. Check this defines a G/N -action.

Then the inflation–restriction exact sequence says that the sequence

0→H1(G/N,AN) infÐ→H1(G,A) resÐ→H1(G,A)G/N

is exact. The first map is inflation (coming by the change of group functoriality)
and the second is the restriction map.

Remark 27.6. In fact this sequence extends can be continued further:

0→H1(G/N,AN)→H1(G,A)→H1(G,A)G/N →H2(G/N,AN)→H2(G,A)

Shapiro’s Lemma. One can define induced discrete G-modules which recovers the
usual notion of induced representations for finite groups. For this, let H ⊂ G be a
closed subgroup and suppose that A is a discrete H-module. Set IndGH(A) equal
to the set of continuous maps

a∗ ∶ G→ A

satisfying a∗(hx) = ha∗(x) for h ∈ H,x ∈ G. We can view IndGH(A) as a discrete
G-module via the G-action

(g ⋅ a∗)(x) = a∗(xg)

Evaluating at 1 ∈ G produces a map IndGH(A) → A which is compatible with the
inclusion H → G. Therefore, we obtain homomorphisms

H i(G, IndGH(A))→H i(H,A)

Proposition 27.7 (Shapiro’s lemma). These are isomorphisms
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Sketch. The proof is easy if one interprets the cohomologyH i(G,−) as the derived
functors of the fixed point function A ↦ AG. Indeed, A ↦ IndGH(A) is exact and
Frobenius reciprocity implies that it sends injective objects to injective objects.

□

Exercise 27.8. Prove Shapiro’s lemma directly using the cocycle description for
i = 0,1.

Lecture 14

28. Theorems for computing cohomology of local Galois groups

We begin with the cohomological version of Hilbert’s theorem 90:

Proposition 28.1. Here K is any field. Then for any Galois extension K ′/K
one has H1(G(K ′/K),K ′×) = 0 and Hq(G(K ′/K),K ′) = 0 for q ≥ 1.

As a corollary we find:

Corollary 28.2. Let n be an integer prime to the characteristic of K and let
µn(K) denote the group of n-th roots of unity in K. Then H1(GK , µn(K)) =
K×/(K×)n.

Proof. From the exact sequence of GK-modules 1→ µn(K)→K
× x↦xnÐÐÐ→→K → 1

we obtain an exact sequence

H0(GK ,K
×)→H0(GK ,K

×)→H1(GK , µn(K))→H1(GK ,K
×)

The first map is the n-th power map K× → K× so we obtain an inclusion

K×/(K×)n → H1(GK , µn(K)). Since H1(GK ,K
×) = 0 this inclusion is a sur-

jective. □

Definition 28.3. For a profinite group G and a prime l set cdl(G) equal to the
l-cohomological dimension of G. This is the smallest (possibly infinite) integer
for which the p-primary part of H i(G,A) = 0 is zero whenever i ≥ cdl(G). One
sets cd(G) equal to the supremum of the cdl(G) as l runs over all primes.

From now on we assume the field K is a finite extension of Qp.

Theorem 28.4. For G = GK one has cd(G) = 2.

Therefore the only relevant cohomology groups in this case are given by H0,H1

and H2. The next theorem of Tate reduces calculations of H2 to those of H0.

Theorem 28.5. Assume that A is a finite GK-module. Set µ equal to the GK-
module obtained as the union of µn(K) for all n. Then there is a perfect pairing

H i(GK ,A) ×H2−i(GK ,Hom(A,µ))→ Q/Z

We are most interested in the case where A is a finite dimensional Fl-vector
space for some prime l. Specialising the theorem in this situation gives:
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Corollary 28.6. Suppose that A is a finite dimensional Fl-vector space. Then
there are isomorphisms

H0(GK ,A) ≅H2(GK ,Hom(A,µl))
as groups. Similarly

H1(GK ,A) ≅H1(GK ,Hom(A,µl))
Here we write µl for the GK-module µl(K).

Proof. The theorem gives an isomorphism

H0(GK ,A) ≅ HomZ(H2(GK ,Hom(A,µ)),Q/Z)
SinceA is an Fl-vector space we have Hom(A,µ) = Hom(A,µl(K)). AlsoH2(GK ,Hom(A,µl)
is an Fl-vector space so we can replace the Q/Z by its l-torsion subgroup which
is [1l ]Z/Z ≅ Fl. Therefore

H0(GK ,A) ≅ HomFl
(H2(GK ,Hom(A,µl)),Fl)

□

We can make this even more explicit. A GK-module A with A = Fn for F
a finite field of characteristic l is the same thing as a continuous representation
ρ ∶ GK → GLn(F). If we choose an identification µl ≅ Fl by fixing a primitive l-th
root of unity ζl in K then the action of GK on µl is given by the l-cyclotomic
character:

χcyc,l ∶ GK → F×l
defined by the identity g(ζl) = ζ

χcyc,l(g)
l for g ∈ GK . Therefore, the GK-module

Hom(A,µl) corresponds to the continuous representation ρ∨ ⊗ χcyc,l ∶ GK →
GLn(F) given by

ρ∨ ⊗ χcyc,l(g) = ρ(g−1)tχcyc,l(g)
Here Xt denotes the transpose of a matrix X.

Example 28.7. ● We have H2(GK , χcyc,l) =H0(GK ,Fl) = Fl.
● We also have H1(GK ,Fl) =H1(GK , µl) =K×/(K×)l.

The last important result for computing cohomology of p-adic fields is Tate’s
Euler characteristic formula. For any finite GK-module A set

χ(A) = h
0(A)h2(A)
h1(A)

where hi(A) denotes the cardinality of the finite group H i(GK ,A). Note that if
A is an Fl-module then the Euler characteristic contains the same information as
the alternating sum

dimFl
H0(GK ,A) − dimFl

H1(GK ,A) + dimFl
H2(GK ,A)

which is the more familiar definition of the Euler characteristic.

Exercise 28.8. Show that if 0 → A → B → C → 0 is an exact sequence of finite
GK-modules then χ(B) = χ(A)χ(C).
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We first give an easier special case of the main theorem:

Proposition 28.9. If the order of A is prime to p then χ(A) = 1.

Proof. Let k denote the residue field of K. Our proof will use two facts:

● The first is that the inflation–restriction exact sequence from last time
can be extended to a 7-term! long exact sequence:

0→H1(G/N,AN)→H1(G,A)→H1(N,A)G/N →H2(G/N,AN)
→ ker (H2(G,A)→H2(N,A))→H1(G/N,H1(N,A))

→ ker (H3(G/N,AN)→H3(G,A))

● H i(IK ,A) = 0 and H i(Gk,A) = 0 for i ≥ 2.
Let k denote the residue field of K and recall the inertia subgroup IK ⊂ GK .
Then one sees directly from the definitions that

H0(GK ,A) =H0(IK ,A)Gk

The inflation-restriction long exact sequence gives that

H2(GK ,A) =H1(Gk,H1(IK ,A))

because H2(IK ,A) =H3(Gk,AIK) = 0. We also get

0→H1(Gk,AIK)→H1(GK ,A)→H1(IK ,A)Gk → 0

because H2(Gk,A) = 0. Therefore

χ(A) = Card(H0(IK ,A)Gk)Card(H1(Gk,H1(IK ,A)))
Card(H1(Gk,AIK))Card(H1(IK ,A)Gk)

The result therefore follows from the computation that for any finite Z-module
A both H0(Ẑ,A) and H1(Ẑ,A) have the same cardinality. □

The general result which computes χ is:

Theorem 28.10. Let A be a finite GK-module of cardinality a. Then

χ(A) = ∣∣a∣∣

where ∣∣a∣∣ denotes the absolute value on K normalised so that ∣∣p∣∣ = p[K ∶Qp].

When A is an Fl-vector space then we can reformulate this in terms of the
alternating sum of the dimensions of the cohomology groups. When l ≠ p it just
says that this alternating sum is zero. When l = p it shows that

dimH0(GK ,A) − dimH1(GK ,A) + dimH2(GK ,A) = [K ∶ Qp]dimA

We’ll see later that these alternating sums are related to the dimension of our
deformation rings.
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29. Examples: mod p representations of a p-adic field

Continue to assume thatK is a finite extension of Qp and consider a continuous
representation of ρ ∶ GK → GLn(F) with F a finite field. We’ve seen that com-
puting the cohomology of End(ρ) is useful for understanding the corresponding
deformation ring Rρ. Here we’ll discuss some examples of these computations.

The cases where F has characteristic l ≠ p and l = p behave very differently.
Here we’ll try to understand the case where l = p. This is based on the following
key lemma:

Lemma 29.1. Let G be a p-group acting on a finite dimensional Fp-vector space
A. Then H0(G,A) = 0 if and only if A = 0.

Proof. Assume A ≠ 0 and A ∖ {0} has no fixed points. Then every G-orbit in
A contains > 1 element. By the orbit-stabiliser theorem the cardinality of every
G-orbit divides that of G. Thus, every G-orbit in A ∖ {0} has order divisible by
p. But this is a contradiction since it implies

Card(A ∖ {0}) ≡ 0 modulo p

□

Corollary 29.2. Suppose that F has characteristic p and ρ is irreducible. Then
ρ factors through the tame Galois group G(Kt/K) = GK/PK .

Proof. Since PK is a pro-p-group the previous lemma implies that ρ contains a
non-zero vector v fixed by PK . Since ρ is irreducible it is generated as a F[GK]-
module by v. Therefore PK acts trivially on the whole of ρ. □

This has the following important consequence. Recall that if H ⊂ G is a closed
subgroup and A is a discrete H-module then we defined the induction IndGH A.

Proposition 29.3. Assume that F = Fp and that ρ ∶ GK → GLn(F) is irreducible.
Then there exists an unramified extension L/K such that and a 1-dimensional
representation χ ∶ GL → GL1(F) such that

ρ ≅ IndKL χ ∶= Ind
GK
GL

χ

Proof. Set V = ρ viewed as a G-module for G = G(Kt/K) and write It for the
tame inertia subgroup, i.e. the kernel of G → Gk. Then It ≅ ∏l≠pZl and so is
abelian of order prime to p. Therefore V ∣It is semi-simple (note this uses that

F = Fp) as an It-module and so we can write

V ∣It
as a direct sum of χ ∶ It → F×. If γ ∈ G and χ is such a character then we can
define χ(γ) by setting

χ(γ)(g) = χ(γ−1gγ)
Note this character only depends upon the image of γ in Gk. If I

t acts on v ∈ V
via χ then it acts on γv by χ(γ). This shows that the group Gk acts on the
set of characters appearing in V ∣It . Fix such a χ and set H ⊂ G be the normal
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subgroup corresponding to the stabiliser of χ in Gk equal to its stabiliser. The
orbit–stabiliser theorem says that

[G ∶H] ≤ dimF V

On the other hand, Frobenius recirocity (i.e. Shapiro’s lemma for H0) produces

a non-zero map V ∣H → IndHIt χ.

Lemma 29.4. The character χ extends to a character χ̃ ∶H → F×.

Proof. Suppose L/K is the unramified extension corresponding to H. Then H =
G(Lt/L) and we’ve seen that H is generated by two elements σ, τ with τ ∈ It and
στσ−1 = τCard l. The fact that H is the stabiliser of χ implies that χ(τ q) = χ(τ).
Therefore we can define an extension of χ be mapping σ ↦ 1. □

This lemma implies that IndHIt χ = χ̃ ⊗ IndHIt 1 (by the projection formula)
where 1 is the trivial character. Note that this is a representation of H/It. Since
IndHIt 1 is a discrete submodule we can find a finite dimensional stable submodule

R ⊂ IndHIt 1 so that V ∣H → IndHIt χ factors through χ̃⊗R. Since H/It is abelian R
admits a composition series 0 = Rn ⊂ Rn−1 ⊂ . . . ⊂ R1 ⊂ R0 = R with each Ri/Ri+1
one dimensional. Choose i maximal so that V ∣H → IndHIt χ factors through χ⊗Ri.
Then the induced map

V ∣H → χ⊗Ri → χ⊗Ri/Ri+1
is non-zero. Therefore Frobenius reciprocity produces a non-zero map

V → IndGH(χ⊗Ri/Ri+1)
Since V is irreducible this is injective so dimV ≤ dim IndGH(χ ⊗Ri/Ri+1). Since
χ ⊗ Ri/Ri+1 is one dimensional this dimension is [G ∶ H]. Since we know [G ∶
H] ≥ dimV this is an equality and the map is an isomorphism. □

Lecture 15

30. Mod p Galois representations (continued)

We contained the discussion from the last part of the previous lecture. Recall
that K was a finite extension of Qp. We say that if ρ ∶ GK → GLn(F) was a

continuous irreducible representation with F = Fp then

ρ ≅ IndKL χ ∶= Ind
GK
GL

χ

for χ ∶ GL → F× a continuous character and L/K an unramified extension. There-
fore, if we can understand such characters then we can understand all irreducible
mod p representations.

To do this note any such χ factors through the tame Galois group G(Lt/L)
which can be topologically generated by two elements σ, τ satisfying στσ−1 =
τ q for q = Card(l) (l the residue field of L). Therefore, any such character is
determined by two elements in F×

● χ(σ) (this can be any element)
● χ(τ) which must satisfy χ(τ) = χ(τ)q. Thus χ(τ) ∈ F×q ⊂ F×.
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Conversely, any two such elements produces a continuos character. In particular,
if we choose a generator of F×q then we can define a fundamental character

ωL ∶ GL → F×

by setting ω(σ) = 1 and ω(τ) equal to the chosen generator of F×q . Of course
this description involves many choices; but there is a more natural description of
these fundamental characters.

Construction 30.1. Fix a uniformiser π ∈K and an embedding τ ∶ l ↪ F. Then
we can define a continuous character ωL ∶ GL → F× by composing

g ↦ the image in l× of
g(π1/(q−1))
π1/(q−1)

with τ .

Exercise 30.2. Prove that this character is a fundamental character and that
its restriction to IL is independent of the choice of π.

Proposition 30.3. Fix a fundamental character ωL. Then every continuous
character χ ∶ GL → F× can be written uniquely as

ψ ⊗ ω∑
f−1
i=0 aip

i

L

for 0 ≤ ai ≤ p − 1 and f defined by q = pf .

Proof. We’ve just seen that such χ are determined by where they send σ and τ .
Where they send σ determines the unramified character ψ and they must send τ
onto an element of F×q = (Z/qZ)×. Any such element can be written uniquely as

f−1
∑
i=0

aip
i

for 0 ≤ ai ≤ p − 1 which gives the result. □

Example 30.4. We’ve seen that every irreducible representation has the form
IndKL χ for χ one dimensional. However, not every such induction will be irre-
ducible (if χ is the trivial character this is obvious because the induced repre-
sentation is the regular representation of GK/GL). In fact, Mackey’s criterion

implies that IndKL χ is irreducible if and only if χ cannot be extended to a charac-
ter of GM → F× for K ⊂M ⊊ L. With notation as in the proposition this occurs
if and only if

f−1
∑
i=0

aip
i /∈ Fpf−1

Exercise 30.5. Show that restriction of the cyclotomic character to GL can be
written as

χcyc = ψ ⊗ ω
∑f−1

i=0 p
i

L

for some unramified ψ.
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Example 30.6 (Classification of two dimensional mod p representations of GQp).
Suppose ρ ∶ GQp → GL2(F) is continuous. Then, either:

● ρ ≅ ψ ⊗ Ind
Qp

Qp2
(ωaQp2

) for 0 ≤ a < p2 − 1 and p+ 1 not dividing a. Here Qp2

is the degree 2 unramified extension of Qp.
●

ρ ≅ ψ ⊗ (χ
a
cyc ∗
0 χbcyc

)

for 0 ≤ a, b < p − 1.

Proposition 30.7. Suppose that ρ ∶ GK → GL2(F) is continuous and that K
does not contain a p-th root of unity. Then

H2(GK ,End(ρ)) = 0

except possibly if

ρ ≅ (χ1 ∗
0 χ2

)

for characters χi satisfying χ1χ
−1
2 = χ−1cyc.

Proof. Using Tate duality we know H2(GK ,End(ρ)) =H0(GK ,End(ρ)∨ ⊗χcyc).
Recall the ∨ denotes the F-linear dual. We can write

End(ρ)∨ = End(ρ∨)

and End(ρ∨)⊗ χcyc = Hom(ρ∨, ρ∨ ⊗ χcyc). Therefore, H2(GK ,End(ρ)) is zero if
and only if there exist no non-zero GK-equivariant homomorphisms

ρ∨ → ρ∨ ⊗ χcyc

The assumption that K contains no p-th root of unity implies χcyc is non-trivial.
In particular, if ρ is irreducible (which implies ρ∨ is irreducible) then no such
map can exist. If ρ is reducible then

ρ∨ = (χ
−1
2 ∗
0 χ−11

)

If ∗ = 0 then any such GK-equivariant map must induce either an isomorphism
χ−12 ≅ χ−11 ⊗ χcyc or an isomorphism χ−11 ≅ χ−12 ⊗ χcyc. Swapping χ1 and χ2 if
necessary this gives the lemma. For the non-split case, any G-equivariant map
must have a non-zero kernel (otherwise it would be an isomorphism and this is
impossible since χcyc is non-trivial). If χ1 ≠ χ2 then this kernel must be the only
G-stable subspace corresponding to χ−12 . In this case, any G-equivariant map
would induce an isomorphism χ−11 ≅ χ−12 ⊗ χcyc. If χ1 = χ2 then the case ∗ = 0
shows there can be no map after semi-simplifying, and therefore no map before
semi-simplifying. □
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31. Obstruction Theory

Now we return to the general setup with G a profinite group and ρ ∶ G →
GLn(F). Here we also return to the case where F is just a finite field. We saw
in Lecture 13 that if H2(G,ρ) = 0 then for any surjective morphism A → B
in C0 (recall this is the category of Artin local rings with residue field F) the
corresponding map

D◻ρ (A)→D◻ρ (B)
was surjective. With the definition below this means that the morphism of func-
tors

D◻ρ → pt

(where pt is the functor sending any ring A onto the set consisting of one element)
is formally smooth.

Definition 31.1. Let F → G be a morphism of set valued functors on C0. We
say this morphism is formally smooth if for the every surjective morphism A→ B
in C0 the map

F (A)→ F (B) ×G(B) G(A)
is surjective.

We know that D◻ρ ≅ Hom(R
◻
ρ ,−), and we can also write pt = Hom(W (F),−)

since every object in A ∈ C0 admits a unique morphism W (F) → A in C (recall
this means that the map of rings induces the identity on residue fields).

Definition 31.2. Let R → S be a morphism in C. We say that R → S is formally
smooth if the morphism of functors

Hom(S,−)→ Hom(R,−)

on C0 is formally smooth. Equivalently, for every commutative diagram

S B

R A

with A→ B surjective there exists a morphism S → A making

S B

R A

commute.

Corollary 31.3. Assume that Rρ is representable (e.g. if G satisfies the p-
finiteness hypothesis). If H2(G,End(ρ)) = 0 then the morphism W (F) → R◻ρ is
formally smooth.
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To motivate the name formal smoothness we recall what it means for a map of
rings R → S to be smooth. The easiest definition to write down is that for every
f ∈ R mapping into an invertible element in S one can write

S = Rf [x1, . . . , xn]/(f1, . . . , fc)
so that

g = det( ∂fi
∂xj
)

maps onto an invertible element in S. Note there are two issues with this defi-
nition. Firstly, it requires R → S to be of finite presentation (which may not be
the case for maps like Zp → Zp[[X]]). Secondly, this definition in terms of par-
tial derivatives is often not very useful in practice. However one can show that
(a version of) formal smoothness (for general rings) and finite presentation is
equivalent to being smooth. So really formal smoothness is the better definition.

Proposition 31.4. Suppose that R → S is a formally smooth morphism in C.
Then

S ≅ R[[X1, . . . ,Xn]]
for some n ≥ 0.

Proof. If S ≅ R[[X1, . . . ,Xn]] then this is clear. Choose generators x1, . . . , xn ∈ S
whose images generate the S/mS = F-vector space mS/(m2

S + mRS). Set T =
R[[X1, . . . ,Xn]]. Then we have a commutative diagram

S T /(m2
T +mRT )

R T /m2
T

u1

where u1 sends xi onto the class of Xi. By formal smoothness we can lift u1 to
a morphism u2 ∶ S → T /m2

T . Iterating the procedure using the diagram

S T /mn
T

R T /mn+1
T

un

and formal smoothness to lift un to un+1 ∶ S → T /mn+1
T we obtain a morphism

u ∶ S → lim←Ðn T /m
n
T ≅ T . We have to show this is an isomorphism.

By a result from Lecture 5, for surjectivity it suffices to show that the induced
map F → T /mST is surjective and that T is mST -adically complete. In other
words, we have to show that mST = mT . We know mST ⊂ mT because u is a
morphism in C. For the opposite inclusion we note that

Xi ≡ u(xi) modulo m2
T +mRT

Since mRT is contained in the image of u we can actually write

Xi ≡ u(xi,1) modulo m2
T
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for some xi,1 ∈ mS . Since m2
T is generated over R by the XiXj’s we can write

Xi ≡ u(xi,2) modulo m3
T

Inducting and using completeness gives Xi ∈ mST .
For injectivity choose yi ∈ S so that u(yi) =Xi (we can do this by surjectivity).

Then u ∶ S → T has an R-linear section T → S sending Xi onto yi. This finishes
the proof. □

Corollary 31.5. If R◻ρ represents D◻ρ and H2(G,End(ρ)) = 0 then

R◻ρ ≅W (F)[[X1, . . . ,Xn]]

Also n = dimFD
◻
ρ (F[ϵ]).

Here is another application of formal smoothness.

Lemma 31.6. Suppose that ρ ∶ G→ GLn(F) has Dρ representable by Rρ. Then

R◻ρ ≅ Rρ[[X1, . . . ,Xn2−dimH0(G,End(ρ))]]

Proof. First, lets show R◻ρ ≅ Rρ[[X1, . . . ,Xm]] for some m. By the above it
suffices to show that the morphism of functors

D◻ρ →Dρ

is formally smooth. Let A→ B be a surjective morphism in C0. We have to show

D◻ρ (A)→Dρ(A) ×Dρ(B)D
◻
ρ (B)

is surjective. An element in the target corresponds to ρA ∶ G → GLn(A) and
ρB ∶ G→ GLn(B) so that if ρA,B is the composite of ρA with GLn(A)→ GLn(B)
then Y ρA,BY −1 = ρB for some Y ∈ 1 +Mat(mB). Since A → B is surjective so is

mA → mB. Therefore we can choose Ỹ ∈ 1 +Mat(mA). Set ρ = Y ρAY −1 ∈D◻ρ (A).
Then ρ is mapped onto ([ρA], ρB).

To show that m = n2 we examine the proof of Proposition 31.4. If m and m◻

are the maximal ideals of Rρ and R◻ρ respectively then the proof shows that

m = dimFm
◻/(m◻,2 +mR◻ρ )

Thus it is dimension of the cokernel of the map m/m2 → m◻/m◻,2. Recall
Hom(m/m2,F) = Dρ(k[ϵ]) and likewise for framed deformations. Therefore m
is also the kernel of the map

D◻ρ (F[ϵ])→Dρ(◻)
Recall also that this can be described as the quotient

Z1(G,End(ρ))→H1(G,End(ρ))
whose kernel is precisely the set of coboundaries B1(G,End(ρ)), i.e. the set of
f ∶ G→Mat(F) with f(g) = ρ(g)X −Xρ(g). Thus, we have an exact sequence

0→H0(G,End(ρ))→Matn×n(F→ B1(G,End(ρ))→ 0

and so m = n2 − dimH0(G,End(ρ)). □
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Note, we only knowDρ is representable whenH
0(G,End(ρ)) = 0 so in basically

all cases one has R◻ρ ≅ Rρ[[X1, . . . ,Xn2]].

Lecture 16

32. Krull dimension and regular local rings

Definition 32.1. Let R be a Noetherian ring. We say that a chain of prime
ideals

p0 ⊊ p1 ⊊ . . . ⊊ pn
in R has length n and define the Krull dimension Krull(R) of R to be the supre-
mum of the lengths of all such chains of prime ideals.

Example 32.2. The Krull dimension of W (F)[[X1, . . . ,Xn]] = n + 1. One ex-
ample of a maximal length chain of ideals is

(0) ⊂ (p) ⊂ (p,X1) ⊂ . . . ⊂ (p,X1, . . . ,Xn)
Example 32.3. If Krull(R) = 0 then every prime ideal is maximal. Thus, di-
mension zero rings are the same as Artinian rings.

We are most interested in the case where R is a complete local ring with finite
residue field F. We have previously seen that if x1, . . . , xn ∈ mR have images
generating mR/m2

R then the map

W (F)[[X1, . . . ,Xn]]→ R

sending Xi ↦ xi is surjective and induces an isomorphism

(X1, . . . ,Xn, p)/(X1, . . . ,Xn, p)2 ≅ mR/(m2
R)

of n + 1-dimensional F-vector spaces. Directly from the definition we see that

Krull(R) ≤ Krull(W (F)[[X1, . . . ,Xn]]) = n + 1
Thus

Krull(R) ≤ dimFHom(mR/(m2
R),F)

Example 32.4. Here are some examples where you don’t have equality:

● Let R = F[[x, y]]/(xy). Then Krull(R) = 1 (because R is completed local
ring at the intersection of two lines) but mR/mR is generated over F by
the images of x and y, and hence is two dimensional.
● Let R = F[x]/xn. Then Krull(R) = 0 because R is Artinian and so every
prime ideal is maximal. However mR/m2

R is generated by the image of x
and is one-dimensional.

The more general assertion is that

Theorem 32.5. Let R be a ring and suppose that x1, . . . , xc ∈ R and that P is
minimal amongst all prime ideals in R containing x1, . . . , xc. Then the maximal
length of a chain of prime ideals

p0 ⊊ . . . ⊂ pn = P
is ≤ c.
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This also gives (for more general rings R ) that Krull(R) is less than the
dimension mR/m2

R because if x1, . . . , xn have images generating mR/m2
R then there

can be no prime ideal (x1, . . . , xn) ⊂ P ⊊ mR.

Definition 32.6. Let R be a Noetherian local ring. Then R is a regular local
ring if the inequality Krull(R) ≤ dimFmR/m2

R is an equality.

Proposition 32.7. Let R → S be a morphism in C. Then the following are
equivalent

(1) S is a flat R-algebra and R/mSR is a regular local F-algebra.
(2) R → S is formally smooth.

Proof. See Tag 07NQ on the stacks project. □

Remark 32.8. We point out that in this theorem it is significant that the residue
field of R and S is perfect.

In particular this gives another way to deduce that a complete local Noetherian
ring R with residue field F is isomorphic toW (F)[[X1, . . . ,Xn]]. One has to show
that R is W (F)-flat (since W (F) is a discrete valuation ring this is the same as
proving it is p-torsionfree) and that R/pR is a regular local ring, i.e. that

Krull(R/pR) = dimF(mR, p)/(mR, p)2

If R is p-torsion free then Krull(R/pR) = KrullR − 1. In particular, this gives:

Corollary 32.9. Let R◻ρ represent D◻ρ . Suppose that

n = dimFD
◻
ρ (F[ϵ]) = KrullR − 1

Then R◻ρ ≅W (F)[[X1, . . . ,Xn]].

Exercise 32.10. Prove the claim that if R is p-torsionfree then Krull(R/pR) =
Krull(R) − 1.

33. Lower bounds on dimensions of deformation rings

We’ve seen that the dimension of H1(GK ,End(ρ)) or Z1(GK ,End(ρ)) gives
upper bounds on the dimensions of Rρ and R◻ρ . The goal here is to give the
following lower bound:

Proposition 33.1. Assume ρ ∶ G → GLd(F) is continuous and G satisfies the
p-finiteness hypothesis.

Krull(R◻ρ /pR
◻
ρ ) ≥ d

2−dimH0(G,End(ρ))+dimH1(G,End(ρ))−dimH2(G,End(ρ))

Proof. Set R = R◻ρ .
First recall that the kernel of Z1(G,End(ρ)) → H1(G,End(ρ)) consists of

coboundaries B1(G,End(ρ)) and there is an exact sequence

0→H0(G,End(ρ))→ End(ρ)→ B1(G,End(ρ))→ 0

Thus

n ∶= dimmR/(m2
R + pR) = d2 − dimH0(G,End(ρ)) + dimH1(G,End(ρ))
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Therefore we can find an exact sequence

0→ J → F = F[[X1, . . . ,Xn]]→ R = R/pR → 0

which induces an isomorphism mR/m
2
R
= mF /m2

F .

Lemma 33.2. Krull(R) ≥ n − dimHom(J/mFJ,F)

Proof. This follows by applying Theorem ?? with to elements x1, . . . , xn ∈ J whose
images form a basis of J/mFJ . Then there can be no prime ideals (x1, . . . , xn) ⊂
P ⊊ Q ⊂ J and so the maximal length of a chain of primes contained in J is at
most dimHom(J/mFJ,F).

Since n = Krull(F ) equals the sum of KrullR and the maximal length of a
chain of primes in J we have the claimed inequality (this uses that F satisfies a
condition called being catenary). □

We have to prove that dimHom(J/mFJ,F) ≤ dimH2(G,Endρ). To do this
set ρp ∶ G → GLn(R) equal to ρuniv ⊗R R. Thus, ρp is universal amongst all
deformations to A ∈ C with pA = 0. A slight variant of the construction from
before of obstruction classes produces

c(ρp) ∶ [(g, h)↦ ρ̃p(gh)ρ̃p(h)−1ρ̃p(g)−1 − 1] ∈H2(G,End(ρ)⊗ J/mFJ)

for some set-theoretic lift ρ̃p ∶ G → GLn(F /mFJ) of ρp. Just as before, this class
is independent of the choice of ρ̃p. Then we obtain a map

Hom(J/mFJ,F)→H2(G,End(ρ))
which sends f onto the image of c(ρp) under the induced homomorphism

H2(G,End(ρ)⊗ J/mFJ)→H2(G,End(ρ))
Concretely

f ↦ [(g, h)↦ f (ρ̃p(gh)ρ̃p(h)−1ρ̃p(g)−1 − 1)]
If we can show this map is injective then we will be done.

Suppose f ∈ Hom(J/mFJ,F) is non-zero. To any such f we can produce a
quotient A of F /mFJ by setting A = F /(mFJ + ker f). Then we have an exact
sequence

0→ I → A→ R → 0

where I ≅ im f = F. In particular, this is a small extension and the image of f in
H2(G,End(ρ)) is precisely the obstruction class associated to this small extension
and ρp. If f is mapped onto zero then this obstruction class vanishes and so
there exists a lift of ρp to ρA ∈ D◻ρ (A). By universality, such a ρA corresponds

to homomorphism R → A and so a homomorphism R → A (since pA = 0). This
homomorphism produces a splitting of the exact sequence

0→ I → A→ R → 0

However, since A → R is an isomorphism on tangent spaces this is impossible
(it would imply that I = 0). We conclude that the kernel of Hom(J/mFJ,F) →
H2(G,End(ρ)) is zero which finishes the proof. □
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Corollary 33.3. Suppose that H0(G,End(ρ)) = F. Then

H1(G,End(ρ)) ≥ Krull(Rρ/pRρ) ≥ dimH1(G,End(ρ)) − dimH2(G,End(ρ))

Combining these results with Tate’s Euler characteristic formula gives:

Proposition 33.4. Suppose G = GK for K/Qp a finite extension and suppose F
has characteristic l. Then

(1) If l ≠ p then

Krull(R◻ρ /pR
◻
ρ ) ≥ d

2

and if H0(GK ,End(ρ)) = F then

Krull(Rρ/pRρ) ≥ 0

(2) If l = p then

Krull(R◻ρ /pR
◻
ρ ) ≥ d

2 + [K ∶ Qp]d2

and if H0(GK ,End(ρ)) = F then

Krull(Rρ/pRρ) ≥ [K ∶ Qp]d2

There is also the following conjecture:

Conjecture 33.5. Suppose ρ ∶ G→ GLn(F) is absolutely irreducible. Then

Krull(Rρ/pRρ) = dimH1(G,End(ρ)) − dimH2(G,End(ρ))

34. Relation to Leopoldt’s conjecture

We’ll finish by explaining how the previous conjecture can be thought of as
a generalisation of Leopoldt’s conjecture. More precisely, we’ll explain how this
conjecture is equivalent to Leopoldt’s conjecture when G is the Galois group of
a number field and ρ is 1-dimensional.

First suppose that G = GK,S where K is a finite extension of Q and S is a finite
set of places of K. Assume that S contains all the infinite places of K and all
places above p = charF. Set S∞ ⊂ S the set of infinite places. In this case one has
a global version of the Euler characteristic formula: for any discrete G-module
M

CardH0(G,M)CardH2(G,M)
CardH1(G,M)

= 1

(CardM)[K ∶Q] ∏v∈S∞
CardH0(GKv ,M)

Note here Kv is either R or C depending on whether v is a real or complex place.
Thus GKv is has at most two elements. Taking M = End(ρ) gives

−dimH0(G,End(ρ)) + dimH1(G,End(ρ)) − dimH2(G,End(ρ))
= ∑
v∈S∞

dimH0(GKv ,End(ρ)) − [K ∶ Q]d2
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Now suppose that ρ is the trivial character. Then combining the global Euler
characteristic formula with the lower bound from the previous section implies
that

Krull(Rρ/pRρ) ≥ 1 + [K ∶ Q] − ∑
v∈S∞

dimHom(GKv ,F)

= 1 +Card({number of complex places of K})
Here we use that [K ∶ Q] equals the sum of the number of real places and twice the

number of complex places. On the other hand, we know that Rρ =W (F)[[Gp,abK,S ]]
for Gp,abK,S the maximal pro-p quotient of Gab

K,S . Therefore, the dimension of Rρ

equals the rank of Gp,abK,S as a Zp-module and so

Krull(Rρ) = dimHom(Gp,abK,S ,Fp)
One formulation of Leopoltd’s conjecture is

Conjecture 34.1. The Zp-rank of Gp,abK,S equals 1+ the number of complex places

of K.

In particular, the conjecture regarding the dimension of Rρ is equivalent to
Leopoltd’s conjecture in this particular case.

Lecture 17

35. Closed loci in deformation rings

For many applications one is not interested in all deformations but only those
which satisfy certain specific conditions. If these specific conditions are chosen
well then one is able to construct a closed subspace of SpecR◻ρ or SpecRρ which
classifies deformations for which these conditions hold.

Definition 35.1. Fix a profinite group G and let Q be a property of continuous
representations ρ ∶ G → GLn(A) for A ∈ C0. We say that Q is a deformation
problem inside D◻ρ if the following conditions are satisfied:

(1) ρ has property Q.
(2) If A → B is a morphism in C0 and ρ ∈ D◻ρ (A) has property Q then also

the image of ρ in D◻ρ (B) has Q.
(3) Let

A ×C B

A B

C

be a fibre product in C0 and let ρ ∈D◻ρ (A×C B) with images ρA ∈D◻ρ (A)
and ρB ∈ D◻ρ (B). Then ρ has property Q if and only if ρA and ρB have
property Q.
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Note that condition (2) implies that the rule

D◻ρ,Q ∶ C
0 → Set

given by

A↦ {ρ ∈D◻ρ (A) with property Q}

is a subfunctor of D◻ρ .

Definition 35.2. Let D ∶ C0 → Set be a subfunctor of D◻ρ . We say that D is a
closed subfunctor if D is representable by an object in C.

The following lemma indicates why we call such subfunctors closed:

Lemma 35.3. If D ⊂ D◻ρ is a closed subfunctor represented by R ∈ C then the

natural map R◻ρ → R is surjective.

Proof. The map R◻ρ → R corresponds to the morphism of functors D → D◻ρ . We

have to show that if R′ equals the image of this map then R′ = R. This will
follow if the representing object ρunivD ∈D(R) factors through GLn(R′). But this
is clear since ρunivD is obtained by applying R◻ρ → R to the representing object

ρuniv ∈D◻ρ (R
◻
ρ ). □

In other words, SpecR → SpecR◻ρ is a closed immersion.

Proposition 35.4. A subfunctor D → D◻ρ is closed if and only if D = D◻ρ,Q for
some deformation condition.

Proof. If D is a closed subfunctor then say that ρ ∶ G → GLn(A) has property
QD if ρ ∈D(A). Then D =D◻ρ,QD

.

Exercise 35.5. Show that if D is representable then QD is a deformation con-
dition.

For the other direction suppose that Q is a deformation condition. Then
representability of D◻ρ,Q follows immediately from Schlessinger’s criterion (or

Grothendieck’s representability theorem). This is because condition (3) ensures
that the maps

D◻ρ,Q(A1 ×A A2)→D◻ρ,Q(A1) ×D◻
ρ,Q(A)D

◻
ρ,Q(A2)

are bijective or surjective precisely when they are when D◻ρ,Q is replaced by D◻ρ .
□

Finally, note that if Dρ is representable then one can replace D◻ρ by Dρ in all
the above results and definitions.
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36. Examples: Fixed determinant

One example of a deformation condition is to fix the determinant of the defor-
mations. One motivation for this construction comes from the use of deformation
theory to study the representations of Galois groups associated to elliptic curves.
One knows that (due to the Weil pairing) the determinant of any such represen-
tation is the cyclotomic character.

Construction 36.1. Fix a continuous character

δ ∶ G→W (F)×

and define

D◻ρ,det=δ(A) ⊂D
◻
ρ (A)

as the subset consisting of ρ for which detρ equals the character G
δÐ→W (F)× →

A×.

Lemma 36.2. Assume that ρ ∈ D◻ρ,det=δ. Then D◻ρ,det=δ defines a deformation

condition in D◻ρ .

Proof. Conditions (1) and (2) are immediately satisfied so we have to show that
ρ ∶ G→ GLn(A×B) has determinant δ if and only if the corresponding represen-
tations ρA ∶ G → GLn(A) and ρB ∶ G → GLn(B) have determinant δ. The only

if direction is immediate since detρA is the composite G
detρ
ÐÐ→ (A ×C B)× → A×

(and likewise for B). For the if direction we observe that

detρ(g) = (detρA(g),detρB(g)) = (δ(g), δ(g))

□

Note that for any subfunctor D ⊂D◻ρ we get an inclusion on tangent spaces:

D(F[ϵ]) ⊂D◻ρ (F[ϵ]) = Z
1(G,End(ρ))

In some cases it is also possible to give cohomological interpretations of these
subspaces. For example:

Proposition 36.3. Let End0(ρ) ⊂ End(ρ) be the subspace consisting of trace
zero matrices and write

Z1(G,End0(ρ)) = {f ∈ Z1(G,End(ρ)) ∣ f(g)ρ(g)−1 ∈ End0(ρ)}

. Then

D◻ρ,det=δ(F[ϵ]) = Z
1(G,End0(ρ))

Proof. Recall that the identification

Z1(G,End(ρ))→D◻ρ (F[ϵ])

sends f onto the deformation

ρf ∶ g ↦ ρ(g) + ϵf(g)



72 DEFORMATION THEORY OF GALOIS REPRESENTATIONS NOTES

We therefore just need to show that detρf(g) = δ(g) if and only if f(g)ρ(g)−1
has trace zero. But we can write

detρf(g) = detρ(g)det(1 + ϵρ(g)−1f(g))
so we just need to show that det(1 + ϵρ(g)−1f(g)) = 1. But for any matrix one
has

det(1 + ϵA) = 1 +Tr(A)
To see this just write 1+A = (aij) so that the determinant is∑σ sign(σ)∏i ai,σ(i)).
Note the only non-zero product occurs when σ(i) = i for all i and so

det(1 + ϵA) =
n

∏
i=1
ai,i = 1 +Tr(A)

Thus detρf = δ if and only if Tr(ρ(g)−1f(g)) = Tr(f(g)ρ(g)−1) = 0. □

If we instead consider the case of unframed deformations we find

Corollary 36.4. One has

Dρ,det=δ(F[ϵ]) = Im (H1(G,End0(ρ)→H1(G,End(ρ)))

Proof. Recall that under the identifications Z1(G,End(ρ)) =D◻ρ (F[ϵ]) andH
1(G,End(ρ)) =

Dρ(F[ϵ]) the map

D◻ρ (F[ϵ])→Dρ(F[ϵ])
sends f ∈ Z1(G,End(ρ)) onto the class in H1(G,End(ρ)) of the function g ↦
f(g)ρ(g)−1. Thus, the image of Z1(G,End0(ρ)) under this map is precisely the
image of H1(G,End0(ρ))→H1(G,End(ρ)). □

Exercise 36.5. Show that the map Im (H1(G,End0(ρ)→H1(G,End(ρ))) is
injective when p does not divide n (here ρ ∶ G → GLn(F)) but need not be when
p divides n.

We write R◻ρ,det=δ for the ring representing D◻ρ,det=δ. Here is an explicit descrip-

tion of this ring:

Lemma 36.6.
R◻ρ,det=δ = R

◻
ρ /I

where I is the ideal generated by δ(g) − detρuniv(g) for ρuniv ∶ G → GLn(R◻ρ ) the
representing object.

Proof. We have to show that a map R◻ρ → A factors through R◻ρ /I if and only if
the composite

ρA ∶ G
ρuniv

ÐÐÐ→ GLn(R◻ρ )→ GLn(A)
is contained in D◻ρ,det=δ(A). But this is clear because detρA(g) − δ(g) equals the
image of δ(g) − detρuniv(g) under R◻ρ → A. □

Finally, we prove a result which shows that one can easily recover R◻ρ from

R◻ρ,det=δ and vice-versa.
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Proposition 36.7. One has

R◻ρ ≅ Rρ,det=δ⊗̂W (F)R
◻
detρ

Here the ⊗̂ denotes the completed tensor product.

Proof. The morphism of functors

D◻ρ,det=δ ×D
◻
detρ →D◻ρ

given by (ρ,χ) ↦ ρ ⊗ χ is an equivalence. Therefore one just need to show that
Rρ,det=δ⊗̂W (F)R◻detρ represents D◻ρ,det=δ ×D

◻
detρ. This follows from the universal

property for the tensor product: for A ∈ C0 a morphism Rρ,det=δ⊗̂W (F)R◻detρ → A

is the same thing as a morphism Rρ,det=δ ⊗W (F)R◻detρ, which is the same thing as

a pair of morphisms of W (F)-algebras R◻ρ,det=δ → A and R◻detρ → A. □

37. Examples: Ordinary deformations

In this section we consider only the case of two dimensional representations.
Then there is a notion of an ordinary Galois representation, which appears very
frequently when considering Galois representations associated to certain modular
forms and elliptic curves (though the precise definition often varies slightly). The
definition we will use is:

Definition 37.1. Let ρ ∶ G → GL2(R) be a continuous homomorphism with
R ∈ C and let I ⊂ G be closed subgroup. We say that ρ is I-ordinary if the
submodule of I-fixed elements

ρI ⊂ ρ
(here we view ρ as R2 equipped with an R-linear action of G) is R-free of rank
one and is a direct summand. Equivalently, if ρ/ρI is R-free of rank one.

Motivation 37.2 (For those who know something about modular forms). Here
is an example where ordinary Galois representations appear in “nature”. Let f
be a Hecke eigenform whose Up-eigenvalue has p-adic valuation 0 (i.e. is a p-adic
unit). Then the corresponding p-adic Galois representation

ρf ∶ GQ,S → GLn(O)

(here S is some finite set of places containing p and O is the ring of integers in a
finite extension of Qp) is ordinary at Ip ⊂ GQp ⊂ GQ,S .

Proposition 37.3. If ρ is I-ordinary then the condition of being I-ordinary is a
deformation condition on D◻ρ .

Proof. It is easy to see that if ρ ∶ G → GL2(A) is I-ordinary then so is its image
under a morphsim A→ B in C0 (since ρ being I-ordinary just means there exists

Y ∈ GL2(A) so that ρ(g) = Y (1 ∗
0 ∗)Y for every g ∈ I). Therefore, the main

thing is to check that if

ρ ∶ G→ GL2(A ×C B)
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is such that ρA and ρB are I-ordinary then ρ is I-ordinary. Since ρA and ρB are
I-ordinary we can find I-invariant elements eA ∈ A2 and eB ∈ B2 which generate
a direct summand. The images of eA and eB in C2 must then generate the same
C-submodule and so, after possibly multiplying eB with a unit, we can assume
that eA and eB are equal in C2. Therefore

(eA, eB) ∈ (A ×C B)2

is an I-fixed element. It also generates a direct summand of (A ×C B)2 because
we can choose splittings of AeA → A2 and BeB → B2 which are equal after base-
change to C. Thus, we obtain a splitting of A ×C B(eA, eB)→ (A ×C B)2. □

Remark 37.4. As with Dρ,det=δ there is an explicit description of the I-ordinary
deformation ring R◻ρ,I as a quotient of R◻ρ . For this suppose that

ρ(g) = (1 ∗
0 ∗)

for g ∈ I. Then R◻ρ,I = R
◻
ρ /I for I the ideal generated by

a21(g), a11(g) − 1, g ∈ I

for ρuniv(g) = ( a11 a12a21 a22 ).

WriteD◻ρ,I for the subfunctor of I-ordinary deformations. One can also produce
a cohomological description of the tangent space

D◻ρ,I(F[ϵ])

For this set EndI(ρ) ⊂ End(ρ) equal to the set of endomorphism which factor
through ρ/ρI (in other words, are zero on ρI). Define

Z1(G,EndI(ρ)) = {f ∈ Z1(G,End(ρ)) ∣ f(g) ∈ EndI(ρ) for g ∈ I}

Lemma 37.5. Under the identification Z1(G,End(ρ)) =D◻ρ (F[ϵ]) one has

Z1(G,EndI(ρ)) =D◻ρ,I(F[ϵ])

Proof. This is obvious. □

38. Examples: Categorical deformation conditions

Several important deformation conditions (particularly those coming from p-
adic Hodge theory) can be described in the following way:

Definition 38.1. Let P be a full-subcategory of the category of finite length
W (F)-modules equipped with a continuous action of G. For A ∈ C0 set

D◻ρ,P(A) = {ρ ∈D
◻
ρ (A) ∣ ρ ∈ P}

(here we identify ρ with the module An with G-action induced by ρ).

Proposition 38.2. Suppose that P is closed under passage to subobjects, quo-
tients and finite direct sums. If ρ ∈ P then D◻ρ,P is a deformation condition.
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Proof. Let A→ B be a morphism in C0 and suppose ρ ∈D◻ρ,P(A). The first thing
to show is that the image ρB ∈ D◻ρ (B) is an object of P. To do this we factor
A→ B through C so that

● C is free as an A-module.
● C → B is surjective.

One way to produce such a C is to consider a surjection A[[X1, . . . ,Xn]] → B
and take C equal to a quotient of A[[X1, . . . ,Xn]] by a sufficiently large power
of its maximal ideal. Let ρC ∈ D◻ρ (C) be the image of ρ. Since C is free as an
A-module we can identify

ρC = ρ⊕ rankAC

as A-modules. Since P is closed under finite direct sums it follows that ρC ∈ P.
Since C → B is surjective it follows also that ρC → ρB is a surjection ofG-modules.
Since P is closed under quotients it follows that ρB ∈ P also.

We also need to prove that if ρ ∈D◻ρ (A×CB) has images ρA and ρB in D◻ρ,P(A)
and D◻ρ,P(B) respectively then ρ ∈ P. To see this note that A ×C B is a subring
of A⊕B and therefore

ρ ⊂ ρA ⊕ ρB
Since P is closed under finite direct sums and subobjects we conclude ρ ∈ P
also. □

Lecture 18

39. Categorical deformation conditions (continued)

The most important example of a categorical deformation condition appears
when G = GK for K a finite extension of Qp and F has characteristic p, i.e. in
the p-adic setting. In this case one takes P to be the full subcategory of flat
representations.

To explain what this means one considers a collection of objects called finite
flat group schemes. By definition these are affine group schemes over OK whose
coordinate rings are finite and flat as an OK-algebra. One considers the abelian
category FFgsOK

of such group schemes which are also commutative and of order

a power of p. One can make the same construction with OK replaced by K, and
in this case one has an (exact) equivalence of categories

Ffgs
K
≅ {finite length Zp-modules equipped with a continuous GK-action}

given by GK ↦ GK(K). One can then consider the composite

FfgsOK
→ Ffgs

K
→ finite length Zp-modules equipped with a continuous GK-action

with the first arrow given by base-change G ↦ G ×OK
K. It turns out that asking

for a finite flat group scheme over K to extend to OK (i.e. arise by base-change
from one over OK) is a strong condition and one says that a representation of
GK on a finite length Zp-module is flat if it is contained in the essential image of
this composite of functors.
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Example 39.1. The reason why being flat is significant is because if E is an
elliptic curve over OK then the GK-representation E[pn](K) given by its pn-
torsion points is flat.

Proposition 39.2. The collection of flat deformations is a deformation condi-
tion. Thus, there exists a quotient R◻ρ,flat of R◻ρ such that a morphism R◻ρ → A

with A ∈ C0 factors through R◻ρ,flat if and only if ρuniv ⊗R◻
ρ
A is flat.

Sketch of proof. Recall we just have to show that the category of flatGK-representation
is stable under subobjects, quotients, and finite direct sums. Let us just sketch
how one shows it is stable under subobjects. Stability under quotients is similar
and stability under direct sums is much easier. If V is flat then V = G(K) for a
finite flat group scheme G over OK . If V ′ ⊂ V is a subobject then V ′ = G′K(K)
for a subobject G′K ⊂ G ×OK

K. Set G′ equal to the closure of G′K inside G. One
shows that this closure is again a group scheme (if it is then it is clearly an object
of FfgsOK

) and so V ′ is flat. □

40. Example: Global deformation conditions at each prime

Here let we consider a global situation. For simplicity we work over the ratio-
nal numbers and let G = GQ,S for S a finite set of rational primes. Particularly
for applications to modularity lifting theorems one often wants to consider defor-
mations of a ρ ∶ GQ,S → GLn(F) where one imposes conditions on the restriction
of deformations of ρ to the local Galois groups GQl

⊂ GQ,S for all primes l ∈ S.

Motivation 40.1. Suppose one wants to study the Galois representation coming
from the Tate-module T (E) ∶= lim←ÐnE[p

n](Q) of an elliptic curve E using defor-

mation theory. Usually one wants to make the corresponding deformation space
as small as possible by imposing as many conditions as possible which are satis-
fied by T (E). Here one takes S the set containing the primes of bad reduction
of E and p; this ensures that T (E) induces a representation of GQ,S . Then one
knows

● for l ≠ p conditions on the action of GQl
⊂ GQ,S on T (E) in terms of the

conductor of E;
● that T (E) is flat when viewed as a GQp-representation.

Both of these points are deformation conditions (we’ve seen this for flatness con-
dition at p) so we would like to study deformations of the reduction modulo p of
T (E) which satisfy these local properties.

Definition 40.2. Let ρ ∶ GQ,S → GLn(F) be continuous. Then a global defor-
mation problem Q is a collection of deformation problems Ql for each l ∈ S. We

say a deformation ρ ∈D◻ρ (A) has Q if the composite GQl
→ GQ,S

ρ
Ð→ GLn(A) has

Ql for every l ∈ S.

Lemma 40.3. Any global deformation Q problem is a deformation problem in
the sense of Definition 35.1.



DEFORMATION THEORY OF GALOIS REPRESENTATIONS NOTES 77

Proof. This is easy. For example if ρ ∈ D◻ρ (A ×B C) with images ρA ∈ D◻ρ (A)
and ρB ∈ D◻ρ (B) then ρ has property Q if and only if the restriction of ρ to GQl

as property Ql for every l ∈ S. Since each Ql is a deformation condition this is
equivalent to the restrictions of ρA and ρB having properties Ql for every l ∈ S,
which is in turn equivalent to ρA and ρB having property Q. □

Now suppose that End(ρ) = F so that we can drop the framing in the above
discussion.

Proposition 40.4. Let Q be a global deformation problem and write

H1
Ql
(GQl

,End(ρ)) ⊂H1(GQl
,End(ρ))

for the subspace determined by the tangent space Dρ,Ql
(F[ϵ]). Then Dρ,Q(F[ϵ])

equals the “Selmer group” which is the preimage of

⊕
l∈S
H1

Ql
(GQl

,End(ρ))

under the map H1(GQ,S ,End(ρ))→⊕l∈SH
1(GQl

,End(ρ)) obtained as the direct
sum of restriction maps.

Proof. This is clear. □

41. Lifting criteria and flatness

Suppose one has a continuous representation ρ ∶ G → GLn(F). Let p = charF.
Then a natural question is whether there exists a lift of ρ to a representation
ρ ∶ G → GLn(O) where O is the ring of integers in a finite extension of Q with
residue field F. Unsurprisingly, the answer to this question can be seen from the
deformation ring. One direction is easy:

Example 41.1. Suppose that R◻ρ represents D◻ρ and that R◻ρ is p-power torsion.

In other words assume that pnR◻ρ = 0 for some n ≥ 1. Then there can be no lift

of ρ to ρ ∶ G → GLn(O) with O is the ring of integers in a finite extension of Q
because any such lift would correspond to a homomorphism R◻ρ → O. If R◻ρ is
killed by pn then any such homomorphism must be zero.

In fact, this is an if and only if.

Proposition 41.2. Let R be a complete local Noetherian ring with residue field
F. Then there exists a local homomorphism R → O inducing a non-zero map on
residue fields, with O the ring of integers in some finite extension of Qp, if and

only if R[1p] ≠ 0.

First we prove two lemmas:

Lemma 41.3. Let R be a Noetherian domain and suppose R[ 1f ] is a field. Then

R has Krull dimension ≤ 1.
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Proof. Since R[ 1f ] is a field every non-zero prime ideal contains f . Let pi be

the primes of A minimal non-zero prime ideals. It suffices to show these are all
maximal. If pj is not maximal choose a maximal ideal containing it m. Then
pi ⊂ m for any i and so m is not contained in ⋃i pi by Prime avoidance. Therefore,
there is g ∈ m not contained in any pi.

Choose q a minimal prime containing g. Then Theorem 32.5 implies there is
no non-zero prime p ⊂ q. However, q ≠ 0 so pi ⊂ q for some i. This is not an
equality because g ∈ q but not in pi. This gives a contradiction. □

Corollary 41.4. Suppose that R is a local integral domain with pR ≠ 0 and
residue field a finite extension of Fp. If R[1p] is a field then R[1p] is a finite

extension of Qp and R is contained in the ring of integers of this finite extension.

Proof. The previous lemma shows that R has Krull dimension ≤ 1. Therefore
R/p has Krull dimension 0 and so is an Artin local ring with finite residue field.
In particular it is finite generated over Zp which shows that R is also finitely

generated over Zp. It follows that R[1p] is finitely generated over Qp and that R

is contained in the ring of integers of this finite extension. □

Proof of Proposition. Note that R[1p] = 0 implies pnR = 0 for some n ≥ 1 so we’ve

just seen one direction. For the opposite direction, we can replace R by R/I
where I denotes the ideal of elements killed by some power of p. This means that
the map R → R[1p] is an inclusion.

Choose a maximal ideal Q in R[1p] and set P = Q∩R which is a prime ideal in

R. Since R[1p]/Q = (R/P )[
1
p], the previous corollary applied to R/P shows that

R/P is contained in the ring of integers of the finite extension R[1p]/Q of Qp. If

O denotes this ring of integers then we obtain a homomorphism

R → R/P ↪ O
and we are done. □

So roughly, a deformation ring being flat over Zp (i.e. p-torsionfree) is roughly
the same as saying you can always construct lifts to characteristic zero. However,
you have to be a little careful here because certainly flatness is not as strong a
condition as being formally smooth. Here is technical result which makes this
slogan slightly more precise:

Proposition 41.5. Let R be a complete Noetherian local Zp-algebra with finite

residue field. Assume that R is p-torsionfree and R[1p] is reduced. For any ideal

I ⊂ R containing p there exists a finite flat Zp-algebra C such that R → R/I
factors through A→ C.

Proof. We can assume that I = mj
R for some j ≥ 1. The first thing we use is

that R[1p] being reduced implies ⋂p = 0 with the intersection running over all

maximal ideals in R[1p]. This is the case in any reduced ring which is Jacobson

(which means that every prime ideal is the intersection of the maximal ideals
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containing it). It is a theorem (see Tag 02IM of the stacks project) that if A is a
Noetherian local ring then SpecA ∖ {mA} is a Jacobson scheme (i.e. every affine
open in this scheme is spec of a Jacobson ring). In particular R[1p] is Jacobson

which proves our claim. It follows also that

⋂(p ∩R) = 0

with the intersection running over maximal ideals in R[1p].
We can refine this assertion slightly: let p1,p2, . . . be a sequence of distinct

maximal ideals in R[1p]. Then we claim that

⋂
i

(pi ∩R) = 0

also. To see this one writes p ∩R = ⋂j (p ∩R +mj
R) so that

⋂(p ∩R) =⋂
p,n
(p ∩R +mj

R)

However, for fixed n the collection of ideals of the form (p ∩R +mj
R) contains

finitely many distinct elements. This shows that the previous intersection runs
over countably many distinct ideals. Hence we can choose an indexing as claimed.

If we set qj = ⋂ji=1 (pi ∩R) then these form a sequence of decreasing ideals in
A whose intersection is zero. A general result about complete Noetherian rings

implies that qn ⊂ mj for n >> 0. Hence R → R/mj
R factors through C = R/qn for

n >> 0. Therefore, we just need to show that R/qn is finite flat over Zp. This
follows since there is an embedding

R/qn ↪
n

∏
i=1
R/(pi ∩R)

with target finite and flat over Zp (by the corollary above).
□

Part 1. Lecture 20

42. Setup for l-adic deformations

The main goal for the rest of the course is to carefully study the l-adic deforma-
tion theory of two dimensional representations of GK for K/Qp a finite extension
with l ≠ p. For the we remind ourselves of the basic structure of this group and
fix some notation:

● Let IK ⊂ GK denote the inertia subgroup so that GK/IK ≅ Ẑ.
● Let PK ⊂ GK denote the wild inertia subgroup. This is a pro-p-group
normal in GK with IK/PK ≅∏l′≠pZl′ .
● Define P̃K ⊂ IK so that IK/P̃K ≅ Zl is the maximal pro-l quotient of IK .

Thus P̃K has order prime to l. Note also that P̃K is normal in GK .

We also fix a finite field F of characteristic l ≠ p and ρ ∶ GK → GLn(F). Soon
we will take n = 2.
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43. Removing prime-to-l ramification

Our goal here is to reduce the calculation of R◻ρ to the case where ρ∣P̃K
is the

trivial representation.
To do this we first consider an F-representation of M of P̃K and evaluation

gives a map

⊕
θ

θ ⊗Mθ →M, Mθ ∶= HomP̃K
(θ,M)

with the direct sum running over isomorphism classes of irreducible F-representations
of P̃K . Since P̃K has order prime to the characteristic of F all such representations
are semi-simple and so this map is an isomorphism. In fact, a similar decompo-
sition applies when M is a representation of P̃K on a finite W (F)-module.

Lemma 43.1. Suppose that θ is an irreducible F-representation of P̃K . Then
there exists a continuous representation θ̃ ∶ P̃K → GLn(W (F)) such that

θ̃∣P̃K
≅ θ modulo l

Proof. This will follow if we can show that the deformation ring of θ is a power
series ring over W (F). We know this follows if we can show H2(P̃K ,End θ) = 0.
This is the case because P̃K has order prime to l. In fact in this situation all high
cohomologies vanish. Here is a sketch of why this occurs: choose a presentation
P̃K ≅ lim←ÐNi with Ni finite quotients of P̃K acting trivially on End θ. Then

H i(P̃K ,Endρ) ≅ limÐ→H
i(Nj ,Endρ)

so it suffices to show H i(N,M) = 0 for i > 0 when N is a finite group of order n
and multiplication by n is injective on M . For this consider the restriction and
corestriction maps

res ∶H i(N,M)→H i({1},M) = 0, cores ∶H i({1},M) = 0→H i(N,M)

Since res ○ cores equals multiplication by n it follows that res is injective and so
H i(N,M) = 0. □

Remark 43.2. The lifting here is unique up to conjugation becauseH1(P̃K ,End θ) =
0 and so the deformation ring is W (F)[[x1, . . . , xn2]] with the variable coming
from conjugation.

For each irreducible P̃K-representation θ choose a θ̃ as in the lemma. If M is
any finite W (F)-module equipped with an action of P̃K we have a map

⊕
θ

θ̃ ⊗Mθ →M, Mθ ∶= HomP̃K
(θ̃,M)

which generalises the previous one. Note that these maps are compatible with
exact sequences in M . As M ↦ HomP̃K

(θ̃,M) is exact, since θ̃ is W (F)-free, the
fact this map is an isomorphism for l-torsion M implies that it is also for general
W (F)-finite M by an inductive argument.
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Proposition 43.3. Now suppose M is a representation of GK on a finite W (F)-
module. For each θ as above set

Gθ = {g ∈ GK ∣ gθg−1 ≅ θ}

and choose a lift θ̃. Then θ̃ extends to a representation of Gθ and there are
functorial (in M) isomorphisms

M ≅⊕
[θ]

IndGK
Gθ
(θ̃ ⊗Mθ)

where the sum runs over GK-conjugacy classes of θ. Here the Gθ-action on Mθ

is defined by (gf)(v) = gf(g−1v).

Proof. We leave the proof that θ̃ extends to a representation of Gθ. See Lemma
2.4.11 of Clozel–Harris–Taylor “Automorphy of some l-adic lifts of automorphic
mod l representations”.

Granting this extension for each θ, we see that the evaluation map θ̃⊗Mθ →M
is Gθ-equivariant since

g ⋅ (v, f) = (gv, g ⋅ f)↦ gf(g−1gv) = gf(v)
for g ∈ Gθ. Frobenius reciprocity therefore gives a GK-equivariant map

(43.4) ⊕
[θ]

IndGK
Gθ
(θ̃ ⊗Mθ)→M

We will be done if we can show that after restricting to P̃K this is the map defined
above. For this note that Mackey’s theorem implies

IndGK
Gθ
(θ̃ ⊗Mθ)∣P̃K

≅ ⊕
g∈GK/Gθ

(θ̃ ⊗Mθ)g

where the superscript g indicates the g-conjugate representation. Since (θ̃ ⊗
Mθ)g = θ̃g ⊗Mθg the source of can be written as

⊕
θ

θ̃ ⊗Mθ

as a P̃K-representation, with the sum running isomorphism classes of θ’s. One
then just has to check that under this identification (43) coincides with our pre-
vious map. □

We can use this to say something about the (unframed) deformation functor
Dρ:

Corollary 43.5. Suppose A ∈ C. Then the map

ρ↦ (ρθ)[θ]
defines a bijection between Dρ(A) and tuples of deformations of the Gθ-representations

ρθ as θ runs over GK-conjugacy classes of irreducible P̃K-representations.

Proof. If A is Artinian this follows from the previous proposition and the case of
general A follows my a limit argument. □



82 DEFORMATION THEORY OF GALOIS REPRESENTATIONS NOTES

In other words, we have an isomorphism of functors

Dρ ≅∏
[θ]
Dρθ

If each of these functors is representable then it follows that

Rρ ≅ ⊗̂[θ]Rρθ

Furthermore, if ρunivθ is the universal object representing Dρθ then

ρuniv =⊕
[θ]

IndGK
Gθ
(θ̃ ⊗ ρunivθ )

represents Dρ. Note this reduced the problem of computing deformations to the

case where the action of P̃K acts as the identity. We need an extra argument to
upgrade this to an isomorphism of framed deformation rings (this comes down to
keeping track of choices of bases).

Proposition 43.6. One has

R◻ρ ≅ (⊗̂[θ]R
◻
ρθ
) [[X1, . . . ,Xn2−∑n2

θ
]]

where nθ = dim θ.

Proof. Let ρuniv be the representing object of D◻ρ . The above gives that

ρuniv ≅⊕
[θ]

IndGK
Gθ
(θ̃ ⊗ ρunivθ )

and so, after restricting to P̃K , we have ρuniv ≅⊕θ θ̃ ⊗ ρunivθ (θ here running over
isomorphism classes rather than GK-conjugacy classes). Therefore we can write
ρuniv as

ρuniv ∼ Y
⎛
⎜⎜⎜
⎝

()θ1
()θ2

⋱
()θJ

⎞
⎟⎟⎟
⎠
Y −1

for some Y ∈ 1 +Mat(mρ). The θ’th block gives a choice of basis on θ̃ ⊗ ρunivθ .
Replacing Y if necessary we can assume this choice of basis comes from the tensor
product of a choice of basis on θ̃ and one on ρunivθ .

Note that ρunivθ is an unframed deformation of ρθ but the choice we just made
allows us to upgrade it into a framed deformation. Thus, we obtain a morphism

⊗̂[θ]R
◻
ρθ
→ R◻ρ

and we want to show this is formally smooth. In other words, if we have a
commutative diagram

⊗̂[θ]R◻ρθ R◻ρ

A B
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with A → B in C0 then we can construct an arrow R◻ρ → A making the diagram
commute.

The right horizontal arrow corresponds to a framed deformation ρB of ρ to B.
The left horizontal arrow corresponds to a tuple of framed deformations (ρθ) to
A from this we produce an unframed deformation

ρA ∶=⊕
[θ]

IndGK
Gθ
(θ̃ ⊗ ρθ)

of ρ lifts ρB. Lifting the choice of basis on ρB we can make this into framed
deformation which produces a map R◻ρ → A making the bottom triangle in the
square commute. Note that the top triangle may not commute because our lift of
the basis on ρB to ρA need not be compatible with the framings on ρθ determined
by the map ⊗̂[θ]R◻ρθ → A.

Exercise 43.7. Using that the whole square commutes show that one can make
such a choice of lift of bases so that the top triangle commutes.

The formal smoothness implies that R◻ρ ≅ (⊗̂[θ]R
◻
ρθ
) [[X1, . . . ,XN ]] for some

N . To show that N = n2 −∑n2θ we look at the dimensions of the mod p tangent
spaces. The mod p tangent space of the source has dimension

dimFDρ(F[ϵ]) + n2 − dimH0(GK ,End(ρ))
while that of the target is

N +∑
[θ]
(dimFDρθ(F[ϵ]) + n

2
θ − dimH0(GK ,End(ρθ)))

So we just need to show that ∑[θ] dimH0(GK ,End(ρθ)) = dimH0(GK ,End(ρ)).
But this is clear from the definition of ρθ. □

44. First application

Now assume n = 2 and that ρ∣P̃K
is irreducible. Call this irreducible represen-

tation θ. Then ρθ is one dimensional and the previous proposition gives that

R◻ρ ≅ R
◻
ρθ
[[X1,X2,X3]]

Since every GK conjugate of θ must be an irreducible factor of ρP̃K
we know that

any such conjugate is isomorphic to θ. Hence Gθ = GK . Thus, we’ve just reduced
everything to the calculation of a one-dimensional deformation ring. We know
such a ring is isomorphic to

W (F)[[X,Y ]]/((1 +X)l
a

− 1)
where a denotes the l-adic valuation of Card(k×). Therefore:

Proposition 44.1. If ρ∣P̃K
is irreducible then

R◻ρ ≅W (F)[[X1,X2,X3,X4, Y ]]/((1 + Y )l
a

− 1)

The universal deformation is equal to θ̃ ⊗ χuniv where χuniv is the universal de-
formation of ρθ.
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Lecture 21

In this lecture the set-up is the same as that in the previous one. Thus K/Qp

is a finite extension with residue field k and F is a finite field of characteristic
l ≠ p with l > 2. We have fixed a continuous representation ρ ∶ GK → GLn(F) and
for today we consider only the case n − 2.

Recall that P̃K denotes the prime-to-l part of IK

45. Non-trivial prime to l-inertia

We previously treated the case where ρ∣P̃K
was irreducible. The other possi-

bility is that ρ∣P̃K
≅ θ1 ⊕ θ2. Recall that Proposition 43.3 ensures each θi lifts

to W (F)-valued characters θ̃i and that each θ̃i extends to a character of Gθi
which is defined as the stabiliser of θi under the action of GK on the irreducible
constituents of ρ∣P̃K

.
Let us first consider the case θ1 ≠ θ2. Then there are two cases:

● θ1 and θ2 are not GK-conjugate. Then Gθi = GK and so each θ̃i extends
to characters of GK . Then Proposition 43.6 implies that

R◻ρ ≅ (R
◻
θ1
⊗̂R◻θ2) [[Z1, Z2]]

● θ1 and θ2 are conjugate and Gθ = GL for L/K a degree two extension.

Since l > 2 and P̃K ⊂ GL we must have that IK ⊂ GL. In other words,
L/K is the degree 2 unramified extension and θ̃i both extend to GL. In
this case Proposition 43.6 implies

R◻ρ ≅ R
◻
ρθ
[[Z1, Z2, Z3]]

where ρθ = HomP̃K
(θ1, ρ) is the one-dimensional GL-representation.

Corollary 45.1. (1) If θ1 and θ2 are not conjugate then

R◻ρ ≅W (F)[[X1, Y1,X2, Y2, Z1, Z2]]/((1 + Y1)l
a

− 1, (1 + Y2)l
a

− 1)

for a equal to the l-adic valuation of k× (recall k is the residue field of
K).

(2) If θ1 and θ2 are conjugate then

R◻ρ ≅W (F)[[X,Y,Z1, Z2, Z3]]/((1 + Y )l
b

− 1)

for b equal the l-adic valuation of l× for l/k the degree two extension.

46. Case of trivial prime to l-inertia

The only remaining possibility is that θ1 = θ2 = θ. In this case we have Gθ = GK
so θ extends to a character of GK . Using the isomorphism

R◻ρ ≅ R
◻
ρ⊗θ−1

we may assume that θ is the trivial character and so ρ∣P̃K
is trivial. Proposi-

tion 43.3 shows that the same will be true for any deformation of ρ. This reduces
us to a computation of deformation rings for the group TK ∶= GK/P̃K . As we’ve
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seen previously this group has an explicit presentation: it fits into a split exact
sequence

0→ Zl → TK → Ẑ → 0

and the quotient Ẑ acts on Zl via conjugation by the l-adic cyclotomic character.
Thus, if ϕ ∈ Ẑ is the topological generator corresponding to arithmetic Frobenius
and σ ∈ Zl is a choice of topological generator then TK is generated by σ and ϕ
with the single relation

ϕσϕ−1 = σq

for q equal the cardinality of k. By abuse of notation we write IK ⊂ TK for the
subgroup generated by σ.

Remark 46.1. This explicit presentation allows us to immediately give a descrip-
tion of R◻ρ in this case: let M denote the affine scheme over Z classifying 2 × 2-
invertible matrices A and B which satisfy

ABA−1 = Bq

Then ρ corresponds to an F-valued point of M and R◻ρ is the completion of the
coordinate ring of M at the corresponding maximal ideal.

Lemma 46.2. Let ρ be a two-dimensional F-representation of TK . Then ρ fits
into an exact sequence

0→ χ1 → ρ→ χ2 → 0

for χ1, χ2 unramified characters (i.e. characters with χi(σ) = 1).

Proof. Since IK ⊂ TL is an l-group there is a fixed vector v ∈ ρ∣IK . From the
identity ϕσϕ−1 = σq we have

ρ(σ)ρ(ϕ−1)v = ρ(ϕ−1)v

so ρ(ϕ−1)v is also a fixed vector of ρ∣IK . Therefore, either ρ∣IK is trivial or TK
stabilises the line generated by v. The lemma follows in either case. □

This lemma shows that (after possibly conjugating ρ) we can write

ρ(σ) = (1 x
0 1
) , ρ(ϕ) = (α y

0 β
)

for some x, y ∈ F and α,β ∈ F×.

Lemma 46.3. Suppose A ∈ C and ρ ∈D◻ρ (A). If α ≠ β then there exists a unique

( 1 X
Y 1 ) ∈ GL2(A) such that

ρuniv(ϕ) = ( 1 X
Y 1

)
−1

Ψ( 1 X
Y 1

)

with Ψ diagonal.
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Proof. The characteristic polynomial of ρ(ϕ) lifts (X − α)(X − β) and so by
Hensel’s lemma has two roots in A. Each of these roots is invertible in A and, since
α ≠ β, their difference is also invertible. As a consequence there are eigenvectors
vα, vβ ∈ ρ for ρ(ϕ) forming a basis.

Let e1, e2 denote the standard basis on ρ. Then, scaling if necessary, we have
vα = e1 +Xe2 and vβ = Y e1 + e2 for unique X,Y . This gives the lemma. □

Lemma 46.4. ρ(σ) = 1 unless α
β
∈ {1, q}.

Proof. We will have ρ(σ) = 1 if the sequence 0→ χ1 → ρ→ χ2 → 0 splits. In other
words if the class of this extension in the Yoneda extension group Ext1(χ2, χ1)
is zero. Since

Ext1(χ2, χ1) =H1(TK ,Hom(χ2, χ1))
and Hom(χ2, χ1) ≅ χ1/χ2 it suffices to show H1(GK , χ1/χ2) = 0 when α/β ≠ 1, q.
Using Tate’s local Euler characteristic formula we have

dimH1(GK , χ1/χ2) = dimH0(GK , χ1/χ2) + dimH2(GK , χ1/χ2)

Since χ1/χ2 is the unramified character sending ϕ onto α/β the H0 vanishes

except when α/β = 1. Tate’s local duality theorem says that H2(GK , χ1/χ2) ≅
H0(GK , χcycχ2/χ1) for χcyc the mod l cyclotomic character. Since this is the

unramified character sending ϕ onto qβ/α it follows that the H2 is zero except

when α/β = q. □

Corollary 46.5. Suppose that α
β
/∈ {1, q}. Then

R◻ρ ≅W (F)[[A,B,P,Q,X,Y ]]/((1 + P )
la − 1, (1 +Q)l

a

− 1)

and ρuniv(σ) is diagonal with eigenvalues 1 + P and 1 +Q.

Proof. For any A ∈ C and any ρ ∈ D◻ρ (A) the above implies there are uniquely
determined X,Y,A,B ∈ mA so that

ρ(ϕ) = ( 1 X
Y 1

)
−1
(α +A 0

0 β +B)(
1 X
Y 1

)

for fixed lifts α,β to W (F) of α,β. We also have that P,Q,R,S ∈ mA such that

ρ(σ) = ( 1 X
Y 1

)
−1
(1 + P R

S 1 +Q)(
1 X
Y 1

)
−1
,

The relation ϕσϕ−1 = σq implies

(α +A 0
0 β +B)(

1 + P R
S 1 +Q)(

α +A 0
0 β +B)

−1
= (1 + P R

S 1 +Q)
q

Exercise 46.6. Looking at the off diagonal entries in this identity show that
R = S = 0. Looking at the diagonal entries deduce that (1 + P )q = (1 + P ) and
that (1 +Q)q = (1 +Q), and therefore that (1 + P )la = 1 and (1 +Q)la = 1.



DEFORMATION THEORY OF GALOIS REPRESENTATIONS NOTES 87

Conversely, given X,Y,A,B,P,Q the given formula for ρ(σ) and ρ(ϕ) define
a deformation of ρ. This proves that R◻ρ is as claimed. □

One can also address some situations where α/β ∈ {1, q}. For example:

Proposition 46.7. (1) Suppose that

ρ(σ) = 1, ρ(ψ) = (1 y
0 1
)

If q /≅ 1 modulo l then R◻ρ ≅W (F)[[P,Q,R,S]].
(2) Suppose that

ρ(σ) = (1 x
0 1
) , ρ(ψ) = (q y

0 1
)

If q /≅ ±1 modulo l then either
(a) x ≠ 0 and R◻ρ is formally smooth over W (F).
(b) x = 0 and R◻ρ ≅W (F)[[X1, . . . ,X5]]/(X1X2).

Proof. First, lets do (1). Write

ρuniv(σ) = (1 +A B
C 1 +D) , ρuniv(ϕ) = (1 + P y +R

S 1 +Q)

for some y ∈ W (F) lifting y. Set I = (A,B,C,D) and consider the equation
ρuniv(ϕ)ρuniv(σ) = ρuniv(σ)qρuniv(ϕ) modulo the ideal Im. Looking at the four
entries gives four congruences

yC ≡ (q − 1)A, B +Dy ≡ qAy + qB
C ≡ qC, (q − 1)D + qCy

all modulo Im. Since q ≠ 1 it follows that I ⊂ Im and Nakayama’s lemma
therefore implies I = 0. We conclude that ρuniv is unramified and so R◻ρ ≅
W (F)[[P,Q,R,S]].

Part (2) is similar. Since q ≠ 1 we can write

ρuniv(σ) = ( 1 X
Y 1

)
−1
(1 +A x +B
C 1 +D)(

1 X
Y 1

) , ρuniv(ϕ) = ( 1 X
Y 1

)
−1
(q(1 + P )

1 +Q)(
1 X
Y 1

)

for x ∈ W (F) a lift of x. A similar argument as before with I = (A,C,D) and
using that q2 ≠ 1 shows that A = C =D = 0. Then looking directly at the identity
ρuniv(ϕ)ρuniv(σ) = ρuniv(σ)qρuniv(ϕ) (not modulo any ideal) one finds that

(x +B)(P −Q) = 0

We therefore obtain a surjective map W (F)[[B,P,Q,X,Y ]]/((x−B)(P −Q))→
R◻ρ . One check that the above formula’s for ρuniv(σ) and ρuniv(ψ) define a rep-

resentation on W (F)[[B,P,Q,X,Y ]]/((x − B)(P − Q)) and so this map is an
isomorphism. If x ≠ 0 then we must have P = Q and so

R◻ρ ≅W (F)[[X1, . . . ,X4]]
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If x = 0 then
R◻ρ ≅W (F)[[B,P,U,X,Y ]]/(BU)

where we’ve set U = P −Q. □

The remaining cases are more complicated so we won’t give direct calculations
in these cases.
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Lecture 22

47. Reduction modulo p

The goal here is to describe some basic results around the process of “reducing”
a representation ρ ∶ G→ GLn(E) modulo p for E a finite extension of Qp and G a
profinite group. Write V for representation of G on the vector space En induced
by ρ.

Definition 47.1. Let O denote the ring of integers inside E. A lattice T ⊂ V is
an O-submodule of V such that the following equivalent conditions hold:

(1) T is finitely generated over O and T generates V over E.
(2) T is finitely generated over O and the map T⊗OK → V given by t⊗x↦ xt

is an isomorphism.
(3) T is a free O-module of rank d.

The equivalence of these three conditions comes down to the observation that
T ⊗O K → V is injective for any O-submodule T ⊂ V . Indeed, if ∑ viti = 0 for
vi ∈K and ti ∈ T then choose n so that πnvi ∈ O for all n with π ∈K a uniformiser.
One has

∑ ti ⊗ vi =∑ ti ⊗ (πnvi)π−n =∑ ((tiπnvi)⊗ π−n) = (∑ tiπ
nvi)⊗ π−n = 0

Lemma 47.2. If T1, T2 ⊂ V are lattices then so is T1 + T2.

Proof. This is clear from condition (1) in the above definition. □

Lemma 47.3. There always exists a lattice T ⊂ V such that T is stable under
the action of G. Equivalently, there exists K ∈ GLn(E) such that Kρ(g)K−1 ∈
GLn(O) for every g ∈ G.

Proof. Choose a lattice T ′ ⊂ V (for example take On ⊂ En). Then H = {g ∈
G ∣ gT ⊂ T} is an open subgroup of G (because GLn(O) ⊂ GLn(E) is an open
subgroup). Thus, G/H is finite and so we can consider

T = ∑
g∈G/H

gT

which is again a lattice in V and which is stable under the action of G. □

This gives us a way of reducing ρ modulo p. We can choose a stable lattice
T ⊂ V and define the reduction modulo p as T ⊗O F (here F is the residue field
of O). Equivalently, choose K so that Kρ(g)K−1 ∈ GLn(O) and define the
ρ ∶ G→ GLn(F) by sending g onto the image of Kρ(g)K−1 under

GLn(O)→ GLn(F)

Of course this definition has a problem because the may be many different choices
of stable lattice in V (equivalently there may be many different K’s such that
Kρ(g)K− ∈ GLn(O) for all g ∈ G. Here is one situation where this is not a
problem:
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Lemma 47.4. Suppose that for some choice of stable lattice T ⊂ V the repre-
sentation T ⊗O F is irreducible. Then any other stable lattice T ′ ⊂ V is a scalar
multiple of T (i.e. T ′ = xT for some x ∈ K). In particular, T ⊗O F ≅ T ′ ⊗O F so
the reduction modulo p is well defined.

Proof. Let T ′ be another stable lattice. Replacing T ′ by πnT ′ for n sufficiently
large we can suppose that T ′ ⊊ T . If T ′ ≠ T then the image of the map

T ′ → T ×O F
is a proper stable subspace inside T ⊗O F and so, since T ⊗O F is assumed irre-
ducible, must be zero. Therefore either T ′ = T or T ′ ⊂ πT for π ∈ E a uniformiser,
and so π−1T ′ ⊂ T . In the second case, repeating the argument shows that either
π−1T ′ = T or π−2T ′ ⊂ T . Continuing in this way we deduce that either π−nT ′ = T
for some n ≥ 0 or π−nT ′ ⊂ T for every n ≥ 0. The second possibility is impossible
so T ′ is a scaler multiple of T . □

On the other hand, things can go wrong when T ⊗O F is not irreducible.

Example 47.5. Consider a representation ρ ∶ G→ GL2(O) with

ρ(g) = (χ(g) 0
0 1

)

for χ a character. Write T = O2 for the corresponding representation. Now
suppose that χ ≡ 1 modulo π. Then for K = ( 1 π−1

0 1
) we have

K−1ρ(g)K = (χ(g) π−1(χ(g) − 1)
0 1

) ∈ GL2(O)

for every g ∈ G. This K corresponds to another choice of stable lattice T ′ inside
V = T [1p]. If χ /≡ 1 modulo π2 then T ′ ⊗O F and T ⊗O F are not isomorphic

(because one is trivial and one is not).

48. Cohomological interpretation of the previous example

The goal here is to give an idea of how you could come up with the previous
example by thinking in terms of cohomology. For this we need to think about
cohomology groups H i(G,V ) for V a representation of G on either an E-vector
space or a finitely generated (but not necessarily set-finite) O-module. Note the
usual set-up for group cohomology does not apply here since such V are not
discrete G-modules. To fix this we make a “naive” definition by setting

H0
cont(G,V ) = V G

and
H1

cont(G,V ) = {continuous 1-cocycles G→ V }/{1-coboundaries}
We need the following properties of these groups:

(1) If 0 → V1 → V → V2 → 0 is an exact sequence then there is the usual
associated long exact sequence

0→H0(G,V1)→H0(G,V )→H0(G,V2)→H1(G,V1)→H1(G,V )→H1(G,V2)
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(2) Assume V is a finitely generated O-module. Then the obvious map
H1(G,V ) → H1(G,V ⊗O F) induces an identification H1(G,V ) ⊗O F ≅
H1(G,V ⊗O F) and likewise with F replaced by E.

(3) Now assume V is a finite free O-module or a finite dimensional E-vector
space. Then, in the usual way we can identify H1(G,V ) = Ext1(1, V )
and, if V is a finite free O-module, then under these identifications the
maps

H1(G,V ⊗O F)←H1(G,V )→H1(G,V ⊗O E)

corresponds to the maps on extension groups obtained by applying ⊗OF
and ⊗OE.

Point (3) shows that one can find stable lattices inside V [1p]⊗1 by considering

classes in H1(G,V ) whose image in H1(G,V [1p]) is zero. Point (2) shows that

these are precisely the torsion classes in H1(G,V ) and the πn-torsion inside

H1(G,V ) can be accessed using point (1). From the exact sequence 0 → V
πn

Ð→
V → V /πnV → 0 we obtain an exact sequence

H0(G,V )→H0(G,V /πnV )→H1(G,V ) πn

Ð→H1(G,V )

Therefore, the πn-torsion is given by the image of the boundary mapH0(G,V /πnV )→
H1(G,V ). Concretely this map sends a fixed element v ∈ V /πnV onto the 1-
cocycle

σ ↦ σ(v) − v
πn

for v ∈ V and lift of v. If H0(G,V ) = 0 then this map is injective

49. Reduction modulo p and Grothendieck groups

To obtain a well defined notion of reduction modulo p one needs to pass to
Grothendieck groups.

Definition 49.1. Let F be any field (i.e. possibly a finite field or a finite extension
of Qp) and let RepF(G) denote the category of continuous F-representation of a
profinite group G. Then the Grothendieck group K0(RepF(G)) is the quotient
of the free abelian group generated by [V ] for V ∈ RepF(G) by the relations

[V ] = [V1] + [V2]

whenever 0→ V1 → V → V2 → 0 is an exact sequence.

Lemma 49.2. Choose a set of representatives of the isomorphism classes of
irreducible representations in RepF(G). Then every element of K0(RepF(G))
can be written runs uniquely as

∑
V

nV [V ]

where V runs over a finite set of these representatives and nV ∈ Z.



92 DEFORMATION THEORY OF GALOIS REPRESENTATIONS NOTES

By the same construction one can form the Grothendieck group of any category
in which exact sequences make sense. For example, it can be formed for any
abelian category.

Lemma 49.3. Suppose that

0→ V1 → . . .→ . . .→ Vn → 0

is a long exact sequence in RepF(G). Then

∑(−1)i[Vi] = 0

in K0(RepF(G)).

Proof. If n = 3 this is by definition and for general n > 3 one argues by induction
by considering the exact sequences

0→ V1 → . . . Vn−3
f
Ð→ Vn−2 → im f → 0

and

0→ im f → Vn−1 → Vn → 0

By induction the first sequence gives ∑n−2i=1 (−1)i[Vi] + (−1)n−1[im f] = 0 and the
second sequence gives (−1)n−1[imf(f)] = (−1)n−1[Vn−1] + (−1)n[Vn]. □

Proposition 49.4. Suppose E is a finite extension of Qp with residue field F
then there is a homomorphism

red ∶K0(RepE(G))→K0(RepF(G))

such that red([V ]) = [T ⊗O F] for any stable lattice T ⊂ V .

Proof. First note that if the class [T ⊗O F] in K0(RepF(G)) is independent of
the choice of stable lattice T ⊂ V then the map this formula defines is a homo-
morphism because if 0→ V1 → V → V2 → 0 is an exact sequence then

0→ T ∩ V1 → T → imT → 0

is an exact sequence of flat (i.e. torsionfree) O-modules and so the exact sequence

0→ (T ∩ V1)⊗O F→ T ⊗O F→ imT ⊗O F→ 0

witnesses the identity red([V ]) = red([V1]) + red([V2]).
Therefore to finish the proof suppose T ′ and T are stable lattices in V . First

assume πT ⊂ T ′ ⊂ T . In this case there is an exact sequence

0→ T /T ′ πÐ→ T ′ ⊗O F→ T ⊗O F→ T /T ′ → 0

which shows that [T ′ ⊗O F] = [T ⊗O F]. For the general case, we can multiply
T ′ by a scalar (since this does not change the isomorphism class of T ′ ⊗O F) and
assume πnT ⊂ T ′ ⊂ T for some 1 ≥ 0. We’ve just treated the case n = 1 and for
n > 1 we argue by induction as follows. Set T ′′ = πn−1T + T ′. Then

πn−1T ⊂ T ′′ ⊂ T, πT ′′ ⊂ T ′ ⊂ T ′′

and so [T ⊗O F] = [T ′′ ⊗O F] = [T ′ ⊗O F]. □
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Corollary 49.5. Let

0 = Fn ⊂ Fn−1 ⊂ . . . ⊂ F1 ⊂ F0 = T ⊗O F

be a composition series of T ⊗O F, i.e. a sequence of stable subspaces whose
subquotients are all irreducible. Define the semi-simplification

(T ⊗O F)ss ∶=⊕
i

Fi/Fi+1

Then (T ⊗OF)ss is (up to isomorphism) independent of the choice of composition
series and the choice of stable lattice T ⊂ V .

50. Aside—Ribet’s Lemma

Let us finish with an interesting result regarding reduction modulo p. We
probably won’t use this in the future but its something good to know.

Proposition 50.1 (Ribet’s Lemma). Let G be a profinite group (even just com-
pact) and suppose that ρ ∶ G→ GL2(E) is a continuous irreducible representation
for which ρss = χ1 ⊕ χ2 with χ1 and χ2 one dimensional. Then there exists a
stable lattice T inside V such that T ⊗O F is a non-split extension of χ1 by χ2.

Below we give a sketch of one possible proof of this result using the tree at-
tached to PGL2: Let X denote the set of homothety classes of lattices inside E2.
We can make X into an undirected graph by asserting that [V ], [V ′] ∈ X are
connected if πV ⊂ V ′ ⊂ V or vice versa.

Lemma 50.2. X is simply connected, in other words any two points are con-
nected by a unique path.

Let C ⊂ X denote the set of vertices which are stable under the action of G
via ρ. Then one has

Lemma 50.3. C is non-empty and convex (i.e. every point on the unique path
between two points in C must also be in C).

Proof. This is because each g ∈ G sends a path between two points in C onto
another such path; by uniqueness this must be the path we started with. □

Lemma 50.4. Suppose x ∈ C and let ρx be the reduction of the corresponding
stable lattice. Then

(1) ρx is irreducible if and only if C consists of a single point.
(2) ρx is a non-split extension of two one characters if and only if every x ∈ C

has exactly one neighbour.
(3) ρx is a split extension of two characters if it has > 1 neighbour. If the

characters are distinct then it will have exactly two neighbours.

The last ingredient is then:

Lemma 50.5. If ρ is irreducible if and only if C is bounded, i.e. each path has
finite length.
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Lecture 23

51. Grothendieck’s l-adic monodromy theorem

In the following section let K/Qp be a finite extension and let E be a finite
extension of Ql with l ≠ p. Consider a continuous representation ρ ∶ GK →
GLn(E). Write V = En for the vector space on which GK acts via ρ.

Recall IK ⊂ GK is the inertia subgroup and IK/P̃K is the maximal pro-l-
quotient.

Lemma 51.1 (Grothendieck). ρ(P̃K) is a finite group.

Proof. Replace ρ by a conjugate so that ρ(GK) ⊂ GLn(O) for O ⊂ E the ring of

integers (equivalently, choose a stable lattice). Since ρ(P̃K) is a closed prime-to-l
order subgroup of GLn(O) it intersects the kernel of

GLn(O)→ GLn(F)

trivially (since this kernel is pro-l). Therefore ρ(P̃K) injects into GLn(F) and so
is finite. □

Corollary 51.2 (Grothendieck). There exists an open subgroup I1 ⊂ IK such
that ρ(g) is unipotent for all g ∈ I1.

Proof. Replacing K by a finite extension we can assume that ρ(P̃K) = 1. Then ρ
is a representation of the group TK = GK/P̃K . Recall this group can be generated

by σ,ϕ with σ ∈ IK/P̃K and the relation

ϕσϕ−1 = σq

Therefore, if v ∈ V has σv = av for a ∈ E then

σ(ϕ−1v) = aqϕ−1v

Therefore, if a is an eigenvalue of ρ(σ) then so is aq. It follows that each a
is a root of unity and so, for sufficiently large N , every eigenvalue of ρ(σN) is
1. Therefore we can take I1 ⊂ IK equal to the subgroup corresponding to that
generated by σN in IK/P̃K . □

The next step is where we use that the coefficients of ρ have characteristic zero.
This means that at any unipotent endomorphism U (i.e. U − 1 is nilpotent) of V
can be written as

exp(N)
for N = log(U) which is a nilpotent matrix .

Proposition 51.3. There exists an open subgroup I1 ⊂ IK and nilpotent endo-
morphism N of V such that

ρ(g) = exp(t(g)N)

for every g ∈ I1. Here t ∶ IK → Zl is the map induced by the isomorphism
IK/P̃K ≅ Zl.
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Proof. Choose x ∈ I1 with t(x) = 1 and which topologically generates ρ(I1). Then
we can write ρ(x) = exp(N) for a nilpotent matrix N . For any g ∈ I1 we have

ρ(g) = ρ(xr) = exp(N)r = exp(rN)

for some r ∈ Zl. We just need to show that r = t(g) and this follows because

ρ(P̃K ∩ I1) = 1 by construction so that ρ∣I1 factors through the t∣I1 ∶ I1 → Zl. □

52. Weil–Deligne representations

Keep the notation from the previous section. We are going to show how the
previous proposition allows us to relate ρ to a representation of the Weil group:

Definition 52.1. Let WK ⊂ GK denote the subgroup generated by IK and the
preimage underGK → Gk of the subgroup generated (not topologically generated)
by the Frobenius ϕ in Gk Thus WK sits in an exact sequence

0→ IK →WK → Z→ 0

Equip WK with the topology defined so that IK ⊂WK has the profinite topology
and WK → Z is continuous. Note this is not the subspace topology coming from
GK because IK ⊂WK is open.

Definition 52.2. A Weil–Deligne representation of WK is a pair (ρ′,N) where
● ρ′ ∶WK → GLn(E) is a continuous representation for the discrete topology
on GLn(E). This is the same as asking that ρ′(IK) is finite.
● N is a nilpotent matrix satisfying

ρ′(g)Nρ′(g)−1 = χ(g)N

for every g ∈WK , where χ is the l-adic cyclotomic character.

Note that in the definition of a Weil–Deligne representation the topology on
the field E is not important.

Proposition 52.3. A Weil–Deligne representation (ρ′,N) can be attached to ρ
so that

ρ(ϕng) = ρ′(ϕng) exp(t(g)N)
for any g ∈ IK and any lift of Frobenius F .

Proof. Let N be the nilpotent matrix attached to ρ from before, and define
ρ′ ∶WK → GLn(E) by setting

ρ′(ϕng) = ρ(ϕng) exp(−t(g)N)

By construction ρ′(IK) is finite so ρ′ is continuous when GLn(E) has the discrete
topology. Using that ρ(ϕ) exp(N)ρ(ϕ)−1 = exp(qN) one checks that ρ′ is also a
homomorphism and that N satisfies the relation required to be a Weil–Deligne
representation. □

In the two dimensional case we have
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Lemma 52.4. Suppose that n = 2 and that N ≠ 0. Then

ρ′(g) = (γ(g)χ(g) ∗
0 γ(g))

for some character γ. Similarly for ρ.

Proof. Note that the identity ρ′(g)Nρ′(g)−1 = χ(g)N implies that kerN is stable
under ρ′. Therefore, if kerN ≠ 0 then in the two dimensional case it follows that
ρ′ is reducible. Conjugating we can assume that N = ( 0 1

0 0 ) and that

ρ′(g) = (γ1(g) ∗
0 γ2(g)

)

Since

ρ′(g)Nρ′(g)−1 = (0 γ1(g)γ2(g)−1
0 0

)

it follows that γ1 = γ2χ. □

53. Weil–Deligne representations over deformation rings

Now we return to the setting of a deformation ring. Let K and E be as above
and let O be the ring of integers in E with residue field F. Fix ρ ∶ GK → GLn(F)
and let R◻ρ be the framed deformation ring with universal deformation ρuniv.

Proposition 53.1. Write ρuniv ∶ GK → GLn(R◻ρ [
1
l ]). Then there exists a nilpo-

tent N ∈Matn(R◻ρ [
1
l ]) such that

ρuniv(g) = exp(t(g)N)

for all g ∈ I1 ⊂ IK some open subgroup. We can associate to ρuniv the pair
(ρuniv′ ,N) where ρuniv′ ∶ GK → GLn(R◻ρ [

1
l ]) is defined by

ρuniv
′
(ϕng) = ρuniv(ϕng) exp(−t(g)N)

for g ∈ IK and ρuniv
′(IK) is a finite group.

Exercise 53.2. Prove this using the same strategy as in the case of a field.

Recall that an irreducible component of SpecR◻ρ [
1
l ] is a maximal irreducible

closed subscheme. These are in bijection with minimal primes of R◻ρ [
1
l ] via the

correspondence

p↦ SpecR◻ρ [
1

l
]/p

Lemma 53.3. Assume that R is a p-torsionfree Zp-algebra. Then the irre-
ducible components of SpecR are in bijection with the irreducible components
of SpecR[1l ].
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Proof. Recall that for any multiplicative subset S ⊂ R the set of prime ideals
in S−1R are in bijection with those prime ideals in R which do not intersect S.
This bijection sends p ⊂ S−1R onto the preimage of p under the natural map
R → S−1R, and in particular is order preserving. Therefore, it suffices to show
that every minimal prime in R does not contain p.

Suppose one minimal prime of R contains p. If q ⊂ R does not contain p then
R/q is also p-torsionfree. Therefore, we can reduce to the case where every mini-
mal prime of R contains p. Then p is contained in the intersection of all minimal
primes and this is the nilradical of R (i.e. the set of nilpotent elements). It follows
that p is nilpotent which contradicts the assumption that R is p-torsionfree. □

Corollary 53.4. Let x, y ∶ R◻ρ → E be two homomorphisms and write ρx, ρy for

the representations GK → GLn(E) obtained by specialising ρuniv. Assume that
both x and y factor through R◻ρ /p for p a minimal prime. Then

ρ′x∣IK ≅ ρ
′
y ∣IK

Note here that

Proof. Set C = R◻ρ [
1
l ] and write ρ′C ∶ GK → GLn(C) for the specialisation of

ρuniv
′
to C. Let I1 be as in the proposition so that ρ′C(I1) = 1 and consider the

characteristic polynomial P (ρ′C , g) ∈ C[T ] for every g ∈ IK/I1. Choose represen-
tatives η1, . . . , ηj of isomorphism classes of representations of IK/I1. Then for
each i = 1, . . . , j we can consider the closed subscheme Zi ⊂ SpecC defined by the
condition that

P (ρ′C , g) = P (ηi, g)
where P (ηi, g) denotes the characteristic polynomial of ηi(g). Concretely, Zi
corresponds to the ideal of C generated by the coefficients of P (ρ′C , g) = P (ηi, g).
Then

SpecC =
j

⋃
i=1
Zi

Since SpecC is irreducible and this is a finite union we must have SpecC = Zi for
some i. Writing P (ρ′x, g) for the characteristic polynomial of ρ′x(g) and likewise
for ρ′y we get that

P (ρ′x, g) = P (ρ′y, g)
for every g ∈ IK . Since these are representations on an algebraically closed field
of characteristic zero it follows that ρ′x∣IK ≅ ρ′y ∣IK . □

This shows that over SpecR◻ρ [
1
l ] the ρ

′ part of the Weil–Deligne representations
remains constant on each irreducible component. However the N part can vary.

Part 2. Lecture 24

54. Inertial types

As usual K/Qp is a finite extension and E/Ql is another finite extension with
l ≠ p. Let O denote the ring of integers in E and F the residue field of E. Fix
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ρ ∶ GK → GLn(F). Rather than consider the usual deformation ring of ρ we
consider its base-change

R◻ ∶= R◻ρ ⊗W (F) O
Recall from last lecture the definition of a Weil–Deligne representation:

Definition 54.1. A Weil–Deligne representation of WK is a pair (ρ′,N) where
● ρ′ ∶WK → GLn(E) is a continuous representation for the discrete topology
on GLn(E). This is the same as asking that ρ′(IK) is finite.
● N is a nilpotent matrix satisfying

ρ′(g)Nρ′(g)−1 = χ(g)N
for every g ∈WK , where χ is the l-adic cyclotomic character.

We saw last time how to attach a Weil–Deligne representation (ρ′,N) to any
l-adic representation ρ ∶ GK → GLn(E). We also saw that if C → SpecR◻[1l ] was
a (geometrically) irreducible closed subscheme and ρx, ρy ∶ GK → GLn(E) are
representations corresponding to morphisms x, y ∶ SpecR → C then

ρ′x∣IK ≅ ρ
′
y ∣IK

where (ρ′x,Nx) and (ρ′y,Ny) are the corresponding Weil–Deligne representations.
This motivates the following definition

Definition 54.2. An inertial type is an equivalence class of pairs (rτ ,Nτ) with
● rτ ∶ IK → GLn(Ql) a representation
● Nτ is a nilpotent matrix
● (rτ ,Nτ) extends to a Weil–Deligne representation.

In particular this implies that rτ has finite image and that Nτ commutes with
the image of rτ .

Proposition 54.3. Assume that τ is an inertial type which is defined over E (so
rτ(x) and Nτ are matrices over E for all x ∈ IK). Then there exists a quotient
R◻(τ) of R◻ with the following property: any map x ∶ R◻ → E′ with E′/E a finite
extension factors through R◻(τ) if and only if the corresponding representation
ρx has Weil–Deligne representation (ρ′x,Nx) with

ρ′x∣IK ≅ rτ ,Nx = Nτ

Furthermore, this condition uniquely determines R◻(τ) if we also ask that R◻(τ)
be reduced and p-torsionfree.

Proof. Recall that we can attach a universal Weil–Deligne representation (ρuniv′,Nuniv)
to ρuniv ∶ GK → GLn(R◻[1l ]) so that (ρ

′
x,Nx) is obtained by specialising (ρuniv′,Nuniv)

along x ∶ R◻ → E′. Consider the ideal I ⊂ R◻[1l ] generated by

rτ(x)ij − ρuniv
′
(x)ij , Nuniv

ij −Nτ,ij

for all x ∈ IK . Then
ρ′x∣IK ≅ rτ ,Nx = Nτ

if and only if x factors through R◻[1l ]/I.
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Remark 54.4. Note this condition does not determine I uniquely, it only deter-
mines a closed subset inside ∣SpecR◻[1l ]∣. But such a closed subscheme can be
given many different scheme structures.

We can take R◻(τ) and quotient of R◻ so that R◻(τ)[1l ] = R
◻[1l ]/I. For

example, we could take R◻(τ) = R◻/I ′ where I ′ is the preimage of I under
R◻ → R◻[1l ].

Note that it R◻/I1 and R◻/I2 are two such quotients satisfying the conditions
in the proposition then so does R◻/I1 ∩ I2. Therefore, there is a minimal ideal
Imin such that R◻/Imin is as required. This must be a radical ideal and cannot
contain any power of p . Thus R◻/I reduced and p-torsionfree. □

Definition 54.5. From now on, when we write R◻(τ) we require that it be
reduced and p-torsionfree. Thus, this quotient of R◻ is uniquely determined.

We would like to understand R
◻(τ) = R◻(τ)⊗OF. Note that with the previous

definition it is not completely clear how to do this. If one wants to understand

R
◻
τ one would like to understand which morphisms R◻ → A, with A an F algebra,

factor through R
◻(τ) in terms of a condition on the corresponding deformation

ρA ∶ GK → GLn(A). However, our definition doesn’t allow this because it doesn’t
make sense to attach a Weil–Deligne representation to ρA. In other words, R◻(τ)
is not defined by a moduli interpretation, only R◻(τ)[1l ] is.

When Nτ = 0 we can fix this problem. To see why this is possible recall that if
ρ ∶ GK → GLn(E) has Weil–Deligne representation (ρ′,N) with N = 0 then ρ′ = ρ
(this was because ρ′ was defined by ρ′(ϕnx) = ρ(ϕnx) exp t(x)N)). This means
that in this case R◻(τ) can be defined via a moduli interpretation: conjugate τ
so that we have rτ ∶ IK → GLn(O). Then a deformation ρA ∈ D◻ρ corresponding

to a map R◻ → A factors through R◻(τ) if and only if

ρA(x) = rτ(x)

for every x ∈ IK . Note however that R◻(τ) defined like this might not be reduced
or p-torsionfree.

55. Non-scalar examples

We are now going to compute R◻(τ) in a number examples. We will assume ρ is
two dimensional. We begin with the easiest cases where ρ∣P̃K

is non-scalar. Recall

that in these cases the computation of R◻(τ) was reduced to the calculation of
one dimensional deformation rings.

Example 55.1. Suppose that θ = ρ∣P̃K
is (absolutely) irreducible. Then we

showed that

R◻ ≅ O[[X,Y,Z1, Z2, Z3]]/((1 +X)l
a

− 1)
where a equals the l-adic valuation of q − 1. Furthermore, the universal deforma-
tion was given by

θ̃ ⊗ χuniv
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where χuniv denotes the universal deformation of the trivial character and θ̃ ∶
GK → GL2(O) is an extension to GK of a lift of θ to O.

First lets look at the irreducible components of R◻. If we assume the coeffi-
cients are sufficiently large so that E contains a primitive la-th root of unity ζ
then

(1 +X)l
a

− 1 = (1 +X − ζ)(1 +X − ζ2) . . . (1 +X − ζ l
a−1)

in O[X]. Therefore
R◻ ≅ O[[X,Y,Z1, Z2, Z3]]/∏

m/∣ l
(1 +X − ζm)

We see that SpecR◻ has la irreducible components which are determined by
which la-th root of unity 1 +X is sent to. Note however that ζ ≡ 1 modulo l so

R◻ ⊗O F ≅ F[[X,Y,Z1, Z2, Z3]]/X la

consists of a single (non-reduced) irreducible component.
Let us compute the inertial type of representations on the component Cm in-

dexed by ζm. A morphism SpecE′ → Cm corresponds to a map x ∶ O[[X,Y,Z1, Z2, Z3]]/(1+
X)− ζm → E′ and specialising the universal deformation we obtain the represen-
tation

θ̃ ⊗ χ
where χ is the character sending σ ↦ ζm and ϕ↦ 1+Y . We see that the restriction
of this representation to IK does not depend upon x and defines an inertial type
τm. Therefore

R◻(τm) = R◻/(1 +X − ζm)
and R◻(τ) = 0 for any other inertial type. We also note that

R
◻(τm) = R

◻(τm′)
for any m,m′.

Example 55.2. Suppose instead that ρ∣P̃K
= θ1⊕θ2 for two characters which are

conjugate over GK . Then

R◻ ≅ O[[X,Y,Z1, Z2, Z3]]/((1 +X)l
b

− 1)
where b equals the l-adic valuation of q + 1 and the irreducible components are
indexed by the lb-th roots of unity. In this case

R◻(τ) = O[[X,Y,Z1, Z2, Z3]]/(1 +X − ζm)
for τ the inertial type (rτ ,0) with

rτ = IndGK
GL
(θ̃1 ⊗ χ)∣IK

= (θ̃1 ⊕ θ̃2)⊗ χ∣IK
for χ a character which on inertia sends σ ↦ ζm and θ̃1, θ̃2 lifts of θ1, θ2. Otherwise
R◻(τ) = 0.

Exercise 55.3. Work out the example when ρ∣P̃K
= θ1 ⊕ θ2 for non-conjugate

characters θ1, θ2.
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56. Scalar examples

Recall that when ρ∣P̃K
is scalar there can be more complicated behaviour.

Twisting by a character we can assume that ρ∣P̃K
is trivial. We begin with an

example which illustrates what can happen when types with N ≠ 0 appear.

Example 56.1. Suppose that q /≡ ±1 and that

ρ(σ) = 1, ρ(ϕ) = (q 0
0 1
)

We saw before that

R◻ ≅ O[[B,P,Q,X,Y ]]/(B)(P −Q)
and the universal deformation is given by

ρuniv(σ) = ( 1 X
Y 1

)
−1
(1 B
0 1

)( 1 X
Y 1

)

ρuniv(ϕ) = ( 1 X
Y 1

)
−1
(q(1 + P ) 0

0 1 +Q)(
1 X
Y 1

)

Now there are two components. If we look at the representations where B ≠ 0
we see that ρ(IK) is not finite. Therefore, the corresponding inertial type must
have N ≠ 0. Up to twisting by a character there is only one such inertial type
given by

τns = (rns,(
0 1
0 0
))

with rζ,ns(σ) = ( ζ 0
0 ζ ). We see that R◻(τns) = O[[B,P,Q,X,Y ]]/(P −Q). The

other possible inertial type is the trivial inertial type τ1 = (Id,0) and this occurs
on the component B = 0. Therefore

R◻(τ1) = O[[B,P,Q,X,Y ]]/B

We conclude with an example which illustrates more complicated behaviour.

Example 56.2. Suppose that ρ(ϕ) has eigenvalues α,β in F with αβ−1 /∈ {1, q, q−1.
Then we computed that

R◻ ≅ O[[A,B,P,Q,X,Y ]]/((1 +X1)l
a

− 1, (1 +X2)l
a

− 1)
Furthermore we showed that ρuniv was given by

ρuniv(σ) = (1 + P 0
0 1 +Q) , ρuniv(ϕ) = ( 1 X

Y 1
)
−1
(α +A 0

0 β +B)(
1 X
Y 1

)

We see that the irreducible components are indexed by ordered pairs of la-th roots
of unity ζ1, ζ2. Note that any specialisation of ρuniv to E′/E has finite image of
inertia. Therefore, the only inertial types appearing have N = 0. The inertial
type of the component with ζ1 = ζ2 = ζ (which we denote τζ)does not equal the
inertial type of any other component so

R◻(τζ) ≅ O[[A,B,P,Q,X,Y ]]/(1 + P − ζ,1 +Q − ζ)
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On the other hand, if ζ1 ≠ ζ2 then the inertial type τζ1,ζ2 on the (ζ1, ζ2) component
equals the inertial type on the (ζ2, ζ1) component. It follows that R◻(τζ1,ζ2) can
be defined by two equations 1 + P + 1 +Q = ζ1 + ζ2 and PQ = ζ1ζ2. Thus
R◻(τζ1,ζ2) = O[[A,B,P,Q,X,Y ]]/(2+P+Q−ζ1−ζ2, PQ−ζ1ζ2) ≅ O[[A,B,X,Y,P ]]/(1+P−ζ1)(1+P−ζ2)
We have R◻(τ) = 0 for all other τ . Reducing modulo l we see that their is a

difference between R
◻(τζ) and R

◻(τζ1,ζ2) because

R
◻(τζ) ≅ F[[A,B,X,Y ]]

is reduced while
R
◻(τζ1,ζ2) ≅ F[[A,B,P,X,Y ]]/(P

2)
is not reduced.

Part 3. Lecture 25

57. Cycles

Recall the following example from last lecture:

Example 57.1. In our usual l ≠ p situation we have R◻ = R◻ρ ⊗W (F) O and for

each inertial type τ defined other E = O[1p] we have quotients

R◻(τ)
of R◻. Suppose ρP̃K

is trivial and that ρ(ϕ) has eigenvalues α,β with αβ−1 /∈
{1, q, q−1}. Then

R◻ = O[[X,Y,P,Q,A,B]]/((1 +X)l
a

− 1, (1 + Y )l
a

− 1)

and R◻(τ) = 0 unless τ = (rζ1,ζ2 ,0) with rζ1,ζ2(σ) = (
ζ1 0
0 ζ2
) for la-th roots of unity

ζ1, ζ2. We computed that

R◻(τζ1,ζ2 =
⎧⎪⎪⎨⎪⎪⎩

O[[X,Y,P,Q,A,B]]/(1 +X + 1 + Y − ζ1 − ζ2, (1 +X)(1 + Y ) − ζ1ζ2) if ζ1 ≠ ζ2
O[[X,Y,P,Q,A,B]]/(1 +X − ζ1,1 + Y − ζ2) if ζ1 = ζ2

Set R
◻ = R◻ ⊗O F. Then R◻ ≅ F[[X,Y,P,Q,A,B]]/(X la , Y la) and

R
◻(τζ1,ζ2) =

⎧⎪⎪⎨⎪⎪⎩

F[[X,Y,P,Q,A,B]]/(X + Y,XY ) if ζ1 ≠ ζ2
F[[X,Y,P,Q,A,B]]/(X,Y ) if ζ1 = ζ2

Clearly these two rings are very different; the first is non-reduced (since X+Y =
0 we have XY = −X2 = 0) while the second is a power series ring. We want to
give a precise way of measuring this difference.

Recollection 57.2. Recall that if X = SpecA is an affine scheme then there is
an associated topological space ∣X ∣ = {prime ideals ∈ A}. The following sets are
in bijection:

(1) closed subsets of ∣X ∣.
(2) reduced closed subschemes of X.
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(3) radical ideals I ⊂ R (recall an ideal is radical if an ∈ I implies a ∈ I. This
is the same as asking that R/I is reduced).

On the other hand, the set of closed subschemes in X are in bijection with ideals
in R, so there are many more closed subschemes than closed subsets. In our
previous example we see that

∣SpecR◻∣ = ∣SpecR◻(τζ1,ζ2)∣ = ∣SpecR
◻(τζ,ζ)∣

but only is reduced.

Recollection 57.3. For an affine scheme X = SpecA and J ⊂ ∣X ∣ closed recall
that the following are equivalent:

(1) J is irreducible
(2) one cannot write J = J1 ∪ J2 for Ji ⊂ J proper closed subschemes
(3) If J corresponds to the radical ideal I ⊂ A then I is a prime ideal.

Definition 57.4. Let X SpecA be a Noetherian affine scheme. For every n ≥ 0
define the group of n-dimensional cycles in X

Zn(X)

as the free abelian group on the set of prime ideals p in X such that SpecA/p
has dimension n. Therefore, an element of ∣X ∣ can be written as a finite sum

∑npp

for np ∈ Z. Since prime ideals correspond to irreducible closed subsets in ∣X
we could equivalently define Zn(X) as the free abelian group on the set of n-
dimensional irreducible closed subsets. Note this definition also makes sense
without X being affine.

Construction 57.5. For any closed subscheme Y ⊂ X = SpecA we can define
an element

[Y ] ∈ Zn(X)
as follows: since X is Noetherian we can write ∣Y ∣ = ⋃ ∣Yi∣ for ∣Yi∣ ⊂ ∣X ∣ irreducible
subsets. Assume Y1, . . . , Ym are those irreducible subsets of dimension n, and
write pi for the corresponding prime ideal. Then we define

[Y ] =
n

∑
i=1

mult(Y,pi)pi

where

mult(Y,pi) = length(A/I)pi
is the length of (A/I)pi as a module over itself. Note this is the same thing as
the dimension

Example 57.6. Take X = SpecR
◻
from before. Let us compute the elements

[SpecR◻(τζ1,ζ2)] ∈ Z4(X). Note that R
◻
contains a single irreducible component

(of dimension 4) corresponding to the prime ideal generated by p = (X,Y ). Since
R
◻ = F[[X,Y,P,Q,A,B]]/(X la , Y la) we have



104 DEFORMATION THEORY OF GALOIS REPRESENTATIONS NOTES

Since R
◻(τζ,ζ) = R

◻/p we have

R
◻
p = F((A,B,P,Q))[[X,Y ]]/(X la , Y la)

so

[X] = l2ap
On the other hand we have R

◻(τζ,ζ) = R
◻/p and so R

◻(τζ,ζ) = F((A,B,P,Q)),
and

[SpecR◻(τζ,ζ)] = p

For ζ1 ≠ ζ2 we haveR
◻(τζ1,ζ2) = R

◻/(XY,X+Y ). AsR◻p = F((A,B,P,Q))[[X,Y ]]/(XY,X+
Y ) we have

[SpecR◻(τζ1,ζ2)] = 2[X]

Cycles don’t see everything.

Example 57.7. Suppose R = F[[X,Y ]] and consider the closed subscheme Y =
SpecR/(XY,Y 2) in SpecR. Even though Y is not reduced we claim that

[Y ] = p ∈ Z1(SpecR)

for p the prime ideal (Y ). To see this note that p is the unique minimal prime of
R′ = R/(XY,Y 2). Localising R′ at p involves inverting all elements not divisible
by Y . In particular, we invert X and so Y = 0 in R′p. Hence

R′p = F((X))

which shows the claim.

Lemma 57.8. Suppose that Y ⊂ X is equidimensional of dimension n and sup-
pose that

[Y ] =∑
Z

[Z]

with the sum running over closed irreducible subsets. In other words, assume the
multiplicity of every component in Y is one. Then there exists an open subscheme
U ⊂ Y such that U is reduced. Conversely, if Y is generically reduced then every
component of Y has multiplicity one.

58. l ≠ p Breuil–Mézard conjecture

We can now state the l ≠ p Breuil–Mézard conjecture. For this we return to
our usual set-up: K/Qp is a finite extension and so is E/Ql. Here l ≠ p and O
denotes the ring of integers in E and F the residue field. Fix ρ ∶ GK → GL2(F)
and set

R◻ = R◻ρ ⊗W (F) O

Theorem 58.1 (Shotton). Assume l ≠ 2. Let k denote the residue field of K.
Then, for each irreducible representation θ ∶ GL2(F(k)→ GL2(F), there exists

C(θ) ∈ Z4(R◻)
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with the following property: For any inertial type τ = (rτ ,0) defined over E, one
has

[SpecR◻(τ)] =∑
θ

m(θ, τ)C(θ)

where m(θ, τ) denotes the multiplicity of θ inside the reduction modulo l of the
representation

σ(τ)
attached to τ via the inertial Langlands correspondence. For the inertial type
τ = (rτ ,Nτ) with Nτ ≠ 0 one has

[SpecR◻(τ)] + [SpecR◻(τ ′)] =∑
θ

m(θ, τ)C(θ)

where τ = (rτ ,0).

An identical result also holds in dimension > 2 except that one then considers
n2-dimensional cycles.

59. Inertial Langlands correspondence

The classical local Langlands correspondence (for GL2) defines a bijection be-
tween isomorphism classes of two dimensional Weil–Deligne representations and
smooth irreducible admissible two dimensional representations of GL2(K) on Ql-
vector spaces. Actually, one has to restrict to Frobenius semi-simple Weil–Deligne
representations on the Galois side (a WD-representation (ρ′,N) is Frobenius
semi-simple if ρ′(ϕ) can be diagonalised). This bijection should satisfy a number
of conditions. Let us write

rec(π)
for the WD-rep corresponding to an irreducible admissible π. Note that here we
suppress many additional choices and normalisations.

Theorem 59.1. If τ = (rτ ,Nτ) is an inertial type then there exists a unique finite
dimensional representation σ(τ) over Ql of GL2(OK) such that for all irreducible
admissible π one has

π∣GL2(OK) contains σ(τ)⇒ rec(π)∣IK ≅ rτ and either N ≅ Nτ or Nτ ≠ 0 and N = 0
If π is infinite dimensional then the converse is also true.

In the two dimensional case one constructs rec by classifying these isomorphism
classes on either side and showing that they match. This allows us to define σ(τ)
by the following explicit formula:

● if τ = (1,0) then σ(τ) is the trivial representation.
● if τ = (1,N) with N = ( 0 1

0 0 ) then σ(τ) is (the inflation to GL2(OK) of)
the Steinberg representation of GL2(k).
● If τ = (1⊕ϵ,0) for ϵ ∶K× → Q×l non-trivial of exponent N (i.e the smallest
N such that ϵ∣1+mN

K
is trivial) then

σ(τ) = IndGL2(OK)
K0(N) ϵ
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where K0(N) consists of matrices upper triangular modulo mN
K . Here we

view ϵ as a representation of the Weil group via local class field theory.
● If τ = (rτ ,0) with rτ irreducible then rτ = rec(π)∣IK for a cuspidal π. Any
such π can be written as

c-Ind
GL2(K)
J Λ

for J a certain subgroup which contains the center of GL2(K) and is
compact modulo this center. Then

σ(τ) = IndGL2(OK)
J0 Λ∣J0

where J0 ⊂ J is the maximal compact subgroup.

60. A brief look at the l = p Breuil–Mézard conjecture

Now suppose l = p. We would like a similar statement comparing cycles in

SpecR
◻
using the representation theory of GLn(k) and (some elements of) the

Langlands correspondence.

Remark 60.1. When l ≠ p the rings has dimension n2. However, we really should
be considering them moduli the action of conjugation by GLn. Usually this
quotient would give a stack rather than a scheme, of dimension

n2 − n2 = 0

This illustrates that one should think of these inertial types as discrete parame-
ters. When l = p we will see that there are also continuous parameters appearing.

Remark 60.2. Historically the l = p version of the Breuil–Mézard conjecture came
first. The motivation was that it could be used to prove modularity lifting the-
orems, and when l ≠ p one was already able to understand the situation well
enough that the l ≠ p Breuil–Mézard conjecture was not necessary from this
point of view. In fact Shotton’s proof of the l ≠ p conjecture for GLn reverse
engineered these ideas, and used existing modularity lifting theorems.

,

● The first step would be to obtain an analogue of R
◻(τ) when l = p. Unlike

in the l ≠ p case one cannot attach a WD-rep to any p-adic representation
ρ ∶ GK → GLn(Qp). Instead one has a to restrict attention to a certain
class of de Rham representations (this turns out not to be so bad because
every representation coming from nature, i.e. from geometry is de Rham).
Then one has a fully faithful functor

{de Rham representation}→ {(ρ′,N,Fil)}

into the category of pairs of WD-reps together with a choice of filtration
(where the filtration measures the Hodge–Tate weights of the de Rham
representation). This motivates us to consider quotients R◻(τ, µ) of R◻
for τ an inertial type and µ an isomorphism class of filtration.
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● These quotients should be defined by the property that x ∶ R◻ → E
factors through R◻(τ, µ) if and only ρx corresponds to (τ, µ) under the
above functor. Unlike in the l ≠ p case, it is very unclear whether these
quotients should exist. In fact, it was an open problem for a long time,
until Kisin gave a construction around 2005.
● One can compute the dimensions of R◻(τ, µ) to be

n2 + d(µ)
where d(µ) denotes the dimension of the flag variety classifying filtrations
of type µ. The largest possible value of d(µ) is n(n − 1)/2 and when this
occurs we say that µ is regular.

Conjecture 60.3. For each irreducible F-representation θ of GLn(k) there exist
cycles

C(θ) ∈ Zn
2+n(n−1)/2(SpecR◻)

such that for any regular µ one has

[SpecR(τ, µ)] =∑m(θ, τ, µ)C(θ)
where m(θ, τ, µ) denotes the multiplicity of θ inside

σ(τ, µ)
where σ(τ, µ) is the base change of F of a lattice inside σ(τ, µ) ∶= σ(τ) ⊗ V (µ)
where V (µ) denotes the algebraic representation of GLn with highest weight µ (or
µ − ρ where ρ = (n − 1, n − 2, . . . ,1,0)).

This is known when n = 2 and K = Qp by work of Kisin and Paskunas, and
others. Besides a few other special cases essentially nothing is known otherwise.
Also nothing is known (not even a conjecture) or what happens when µ is not
regular.
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