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Abstract. We construct an analogue of Gerasimov–Kharchev–Lebedev–Oblezin
(GKLO) representations for twisted Yangians of type AI, using the recently found
current presentation of these algebras due to Lu, Wang and Zhang. These new rep-
resentations allow us to define interesting truncations of twisted Yangians, which, in
the spirit of Ciccoli–Drinfeld–Gavarini quantum duality, reflect the Poisson geome-
try of homogeneous spaces. As our main result, we prove that a truncated twisted
Yangian quantizes a scheme supported on quotients of transverse slices in the affine
grassmannian.
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1. Introduction

In [GKLO05], Gerasimov, Kharchev, Lebedev and Oblezin (GKLO) constructed a
family of infinite-dimensional representations of the Yangian using explicit difference
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operators. These GKLO representations were later generalized to the shifted Yangian
setting and used to produce quantisations of transverse slices to Schubert varieties in
the affine Grassmannian [KWWY14, BFN19]. In this paper we develop an analogue of
that picture for twisted Yangians of type AI. Concretely, we construct explicit GKLO-
style representations of these twisted Yangians and realise the resulting truncations as
quantisations of loci inside quotients of the thick affine Grassmannian.

Twisted Yangians, introduced by Olshanski [Ols92], arise in mathematical physics
from the Yang–Baxter and reflection equations as algebras controlling the symmetries
of integrable systems with boundaries. From an algebraic point of view, they appear
naturally in the context of Gelfand–Tsetlin theory for simple Lie algebras of classical
types [Mol06]. Recently, they have also been realized as degenerations of affine quantum
symmetric pair coideal subalgebras, or ıquantum groups [LWZ25]. Shifted versions of
twisted Yangians, which we denote by twYµ for dominant µ ∈ X∗(T ), were introduced
in [TT24] building on the Drinfeld presentation from [LWZ23].

Setup. Throughout we take G = SLn with diagonal torus T and write X∗(T ) =
Hom(Gm, T ). Let N(T ) ⊂ G denote the normaliser of T so that W = N(T )/T . We
consider the thick affine grassmannian Grthick = G((z−1))/G[z] with the Poisson struc-
ture induced from the standard Manin triple for the loop algebra. If G0 ⊂ G[[z−1]]
denotes the first congruence subgroup then, for any dominant (always considered rela-
tive to the standard upper triangular Borel) µ ∈ X∗(T ), the G0-orbits Grµ through zµ

are known to be Poisson subschemes. Finally, we consider the involution

τ : G((z−1)) → G((z−1)), τ(g) = g(−z)t

where xt denotes the transpose of x.

Poisson geometry. The first part of this paper analyses the Poisson geometry of the
quotient spaces K0\Grµ. This is done in Section 3 and the following summarises our
main results.

Theorem 1.1. Let K ⊂ G((z−1)) denote the subgroup defined by g(−z)t = g(z)−1 and
set K0 = K ∩ G0. Then

(1) K0 is a coisotropic subgroup of G0 and so, for each µ ∈ X∗(T ), the quotient
K0\Grµ (which is representable by an affine scheme) inherits a Poisson struc-
ture from Grµ.

(2) The symplectic leaves inside K0\Grµ are connected components of the sub-
schemes

(1.1) K0\ (Kxzη ∩Grµ)

where η ∈ X∗(T ) and x ∈ G is such that xtx ∈ N(T ) represents an involution
w ∈ W with η + w(η) ≥ 2µ and dominant. The subscheme (1.1) is uniquely
determined by λ = η + w(η), except when w has no fixed points, in which case
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there are two such subschemes corresponding to two possible choices of x. If
µ = 0 then (1.1) is connected and hence a single symplectic leaf.

(3) Write Sλ
2µ for the subscheme (1.1) when w has at least one fixed point and the

union of the two distinct such subschemes otherwise. If µ = 0 then the ideal of
the reduced closed subscheme

S≤λ
2µ =

⋃
γ≤λ

Sλ
2µ

inside K0\Grµ can be described as the radical of an ideal Poisson generated by
a set of explicit rational functions defined via trailing principal minors.

A central idea underlying the proof of these results is the existence of an isomorphism

K0\Grµ ∼= Grτ=1
2µ

induced via K0x 7→ τ(x)x for τ(g(z)) = g(−z)t. This identifies the quotient Poisson
structure on the left hand side with that on the right hand side obtained via Dirac
reduction (up to a factor of 2). It also identifies the subschemes Sλ

2µ from Theorem 1.1

with the τ -fixed points inside the loci Grλ2µ = Gr2µ ∩Grλ with Grλ ⊂ Grthick the

Schubert cell given as the G[z]-orbit through zλ.
We expect that the restrictions to µ = 0 in Theorem 1.1 are unnecessary. However,

we are currently unable to prove this. The most significant obstruction arises in the
proof of part (3) of Theorem 1.1.

GKLO-representations and quantisation. Our second main result shows the Pois-
son structures from Theorem 1.1 are quantised by twisted Yangians and their trun-
cations. Write twYµ for the C[ℏ]-form of the twisted Yangian shifted by a dominant
µ ∈ X∗(T ).

Theorem 1.2. For each dominant µ ∈ X∗(T ) there is an isomorphism of Poisson
C-algebras
(1.2) twYµ/ℏtwYµ

∼= O(K0\Grµ).

Furthermore,

(1) For each dominant λ ∈ X∗(T ) we define quotients twYλ
µ of twYµ via twisted

GKLO-representations. See Theorem 7.2.
(2) If µ = 0 then the identification (1.2) induces a Poisson surjection

twYλ
µ/ℏtwYλ

µ → O(S≤−w0(2λ)
2µ )

which is an isomorphism up to nilpotent elements.

The twisted GKLO representations from part (1) of Theorem 1.2 are given in terms
of the current, or ‘new Drinfeld’, presentation of the twisted Yangian, found recently
by Lu, Wang and Zhang [LWZ23]. The generators commonly denoted as bi(u) act
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as sums of localized difference operators, via formulae which somewhat resemble the
Gelfand–Tsetlin formulae for quantum symmetric pairs [GK91, LP25]. The shape
of our formulae is motivated by the realization of the twisted Yangian in terms of
Sklyanin minors. Namely, the corresponding Cartan generators, given by the principal
Sklyanin minors, are required to act as even polynomials. This restriction determines
the correct coefficients on the difference operators corresponding to the bi(u) generators.
The presence of this extra symmetry is a new feature, absent from the original GKLO
representations.

We also expect that the map in part (2) of Theorem 1.2 is actually an isomorphism,

so that twYµ directly quantises S≤−w0(2λ)
2µ , rather than a non-reduced scheme supported

on this locus. This could be proved if one knew the Poisson ideal discussed in part
(3) of Theorem 1.1 was reduced. In Conjecture 3.14 we formulate a conjecture in this
direction and show how its validity implies an explicit description of the ideal defining
the truncation twYλ

µ inside twYµ.

Theorem 1.3. Assume µ = 0 and that Conjecture 3.14 holds. Then the surjection
in part (2) of Theorem 1.2 is an isomorphism and twYλ

µ is the quotient of twYµ by a

two sided ideal generated by elements A
(r)
i for r ≥ ri := ⟨ωi, 2λ⟩ and B

(ri+1)
i for each

1 ≤ i ≤ n− 1.

A concrete example of Ciccoli–Drinfeld–Gavarini duality. Theorem 1.2 can be
viewed through the lens of the Drinfeld–Gavarini quantum duality principle [Dri87b,
Gav02, Gav07]. For a Poisson–Lie group H with Lie algebra h, quantum duality
asserts that the semiclassical limit of Uℏ(h) is isomorphic, as a Poisson–Hopf algebra,
to O(H∗), the algebra of functions on the dual Poisson–Lie group. Applied to H = G[z]
this identifies the semiclassical Yangian with functions on the dual Poisson group G0

and is the starting point for the results in [KWWY14]. Ciccoli–Gavarini [CG06, CG14]
extended quantum duality to Poisson homogeneous spaces (quotients by coisotropic
subgroups). If N ⊂ H is coisotropic then the algebra of N⊥-invariant functions on
the dual Poisson group corresponds to the semiclassical limit of a (one-sided) coideal
subalgebra. In our setting the subgroup N = G[z]τ and its orthogonal complement give
rise (via this principle) to twisted Yangian-type coideal algebras; Theorem 1.2 provides
a concrete realisation of this correspondence in the split type AI case.

Remark 1.4. Just before the completion of our paper, another preprint on the same
topic was independently released by Lu, Wang and Weekes [LWW25]. There is consid-
erable intersection between the two papers. For example, we both introduce GKLO-
style representations and study the Poisson geometry of fixed point loci in affine Grass-
mannian slices. Many aspects of [LWW25] are more general, e.g., they also construct
GKLO representations for twisted Yangians of type AIII, consider generalized affine
Grassmannian slices, and introduce the notion of an iCoulomb branch.
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On the other hand, elements of our approach differ significantly from loc. cit. and
appear to offer more control towards several outstanding open problems. For example,
Theorem 1.2 provides the partial step towards Conjecture 8.13 of loc. cit. as described in
Remark 8.14. In a similar spirit, our Conjecture 3.14 provides a direct approach towards
Conjecture 3.10 of loc. cit. and presents the possibility of emulating the strategy devised
in the untwisted setting in [KMWY18].
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2. Notation

2.1. Basic setup. Let G = SLn viewed as an algebraic group over SpecC, with diag-
onal torus T and upper triangular Borel B. Also write U± respectively for the upper
and lower triangular unipotent subgroups in G. Set W = N(T )/T for N(T ) ⊂ G the
normaliser of T and write w0 ∈ W for the longest element.

Set X∗(T ) = Hom(Gm, T ) and X∗(T ) = Hom(T,Gm), which are dual via the evalu-
ation pairing

⟨−,−⟩ : X∗(T )×X∗(T ) → Z, (β∨, λ) 7→ ⟨β∨, λ⟩ = β∨(λ).

We use analogous notations for the diagonal torus T̃ ⊂ GLn, with canonical maps

X∗(T ) ↪→ X∗(T̃ ) and X∗(T̃ )↠ X∗(T ).

We will use the index sets I = {1, · · · , n−1} and Ĩ = {1, · · · , n}. Let (aij)i,j∈I be the
Cartan matrix associated with G. Given i ∈ Ĩ, we write ϵ∨i ∈ X∗(T̃ ) for the character

diag(t1, . . . , tn) 7→ ti

and ϵi for its dual under ⟨−,−⟩. Let ∆+ be the set of all positive roots of G (relative
to B), with simple roots α∨

i = ϵ∨i − ϵ∨i+1 (i ∈ I). We write ωi ∈ X∗(T ) ⊗Z Q for the
fundamental coweights, dual to α∨

i , and ω∨
i ∈ X∗(T ) for the fundamental weights. Let

X∗(T )
+ ⊂ X∗(T ) denote the set of dominant coweights relative to B, so λ ∈ X∗(T )

+

iff ⟨α∨
i , λ⟩ ≥ 0 for each i ∈ I and write µ ≤ λ if λ− µ is a sum of positive coroots. .

2.2. Affine grassmannians. Write G((z−1)), G[z], and G[z, z−1] for the ind-group
schemes over SpecC with A-valued points given respectively by G(A((z−1)), G(A[z])
and G(A[z, z−1]). We use similar notation when G is replaced by another affine group
scheme over SpecC. We then consider the fpqc quotients

Grthick = G((z−1))/G[z], Grthin = G[z, z−1]/G[z]

the first of which is representable by a scheme, and the latter by an ind-scheme. For
any coweight λ ∈ X∗(T ) we write zλ ∈ Grthick for the image of λ(z) ∈ G((z−1)) and if
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λ is dominant we write Grλ for the G[z]-orbit through this point, with closure Gr≤λ.
We also consider the subgroup

G0 ⊂ G((z−1))

whose A-points, for any C-algebra A, consist of matrices in 1 + z−1Mat(A[[z−1]]).
Recall that if U±

0 = G0 ∩U±((z−1)) and T0 = G0 ∩ T ((z−1)) then multiplication defines
an isomorphism

(2.1) U+
0 × T0 × U−

0 → G0

(indeed multiplication U+ × T × U− → G is known to be an open immersion whose
image is the open locus defined by the non-vanishing of the principal minors). For
µ ∈ X∗(T )

+ set Grµ ⊂ Grthick equal the G0-orbit through zµ. Finally, for any 1 ≤ i ≤ n
and any pair of i-tuples I, J ⊂ {1, . . . , n} we write

∆IJ ∈ O(G0)[[z
−1]]

for the series valued function whose value on g ∈ G0 is its IJ-th minor. Write ∆
(r)
IJ ∈

O(G0) for the coefficient of z−r in this series.

2.3. Commutators. We use the following notation for commutators: [a, b] = ab− ba
and [a, b]+ = ab+ ba.

3. Symmetric quotients of the affine grassmannian

3.1. Poisson structures on loop groups. Following [KWWY14] we equip G((z−1))
with the Poisson structure induced by the Manin triple (g((z−1)), g[z], z−1g[[z−1]]), with
the pairing

(x, y) = Resz=0Trace(xy)

i.e., the coefficient of z−1 in Trace(xy). In [KWWY14, Proposition 2.13] (specialised
to the case G = SLn) the resulting Poisson bracket {−,−} is computed as:

Lemma 3.1. Recall the series valued functions ∆IJ = ∆IJ(z) from Section 2.2. Then

{∆IJ(u),∆KL(v)} =
1

u− v

∑
1≤p,q≤n

(
ϵJ,Lpq ∆IJ(p⇝q)(u)∆KL(q⇝p)(v)− ϵI,Kqp ∆I(q⇝p)J(u)∆K(p⇝q)L(v)

)
where

• J (p⇝q) denotes the tuple with p ∈ J replaced by q. Likewise for L(q⇝p), I(q⇝p),
and K(p⇝q).

• ϵJ,Lpq = 0 if p ̸∈ J or q ̸∈ L and otherwise equals ±1 according to the sign of the

permutations reordering J (p⇝q) and L(q⇝p) into ascending order.

Both G[z] and G0 appear as Poisson subgroups of G((z−1)) and the quotient Grthick =
G((z−1))/G[z] inherits a Poisson structure from that on G((z−1)).
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Lemma 3.2. Recall U−
0 = G0 ∩ U−((z−1)). For µ ∈ X∗(T ) dominant, set U−,µ =

G0 ∩ zµG[z]z−µ and U−
µ = zµU−

0 z
−µ. Then both are subgroups of U−

0 and:

(1) U−,µ is a coisotropic subgroup in G0, and so G0 → G0/U−,µ is a Poisson quotient.
(2) The quotient map U−

µ → U−
0 /U−,µ is an isomorphism.

Identical assertions hold with µ anti-dominant and each U−
0 replaced by U+

0 = G0 ∩
U+((z−1)).

Proof. For part (1) one shows that the orthogonal complement of LieU−,µ in g[z] is
a Lie subalgebra, which is an easy computation. Part (2) follows since multiplication
U+
µ × U+,µ → U+

0 is an isomorphism. □

Recall Grµ ⊂ Grthick is the G0-orbit through zµ for dominant µ ∈ X∗(T ). Lemma 3.2
furnishes two descriptions of this locally closed subscheme. Firstly, the orbit map
induces an isomorphism G0/U−,µ ∼−→ Grµ which, by part (1) of Lemma 3.2, endows Grµ
with a natural Poisson structure. On the other hand, part (2) of Lemma 3.2 combined
with the factorisation (2.1) shows how acting on the base point in Grthick gives an

isomorphism Wµ := U+
0 T0u

µU− ∼−→ Grµ.
In what follows it will also be useful to consider a variant of this construction giving

an isomorphism

(3.1) U+,−µ\G0/U−,µ → U+
−µ × T0 × U−

µ

g 7→zµgzµ−−−−−→ W2µ

where the first map comes from part (2) of Lemma 3.2. We claim (3.1) is Poisson for
the quotient Poisson structure on the source and that on the target induced by the
isomorphism W2µ

∼= Gr2µ. To see this note the composite G0 → U+,−µ\G0/U−,µ → W2µ

is exactly the shift morphism denoted ι2µ,−µ,−µ in [FKP+18, §5.9]. That this is Poisson
follows from [FKP+18, Theorem 5.15].

3.2. Symmetric quotients and fixed points. Consider the anti-involution τ(g) =
gt(−z) on G((z−1)) and set

K = {g ∈ G((z−1)) | τ(g) = g−1}
This can be interpreted as the loop group associated to the special unitary group
over C((z−1)) respecting the Hermitian form (x, y) = xt(z)y(−z) on C((z−1))n. Thus,
[PR08, Theorem 0.1] ensures K is connected. The group K acts on Grthick via left
multiplication.

Remark 3.3. Previous work [Nad04, CY23] consider the action on Grthick of fixed points
in G((z−1)) under involutions like g 7→ g−t on Gr. While there are a number of
similarities, the geometry of this action is different to ours in several significant ways.

We avoid discussion of the quotient stack K\Grthick and instead restrict attention
to K0\Grµ for K0 = K ∩ G0. The latter are represented by schemes, since g 7→ τ(g)g
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induces a monomorphism

(3.2) Ψ : K0\Grµ = K0\G0/U−,µ → U+,−µ\G0/U−,µ (3.1)−−→ Wτ=1
2µ

which is easily checked, e.g. by comparing Hilbert series of the tangent spaces at the
identity, graded via loop rotations, to be surjective and hence an isomorphism.

Lemma 3.4. The subgroup K0 ⊂ G0 is coisotropic.

Proof. As in Lemma 3.2, this follows since the orthogonal complement of LieK0 in g[z]
is Lie(K ∩G[z]) which is a Lie subaglebra. □

Thus K0\Grµ = K0\G0/U−,µ has a natural Poisson structure and (3.2) transfers this

structure to Wτ=1
2µ . On the other hand, (U+,−µ\G0/U−,µ)

τ=1 ∼= Wτ=1
2µ has an intrinsic

Poisson structure induced from that on Gr2µ ∼= W2µ via Dirac reduction (see, for
example, [LGPV13, §5.4.3], [Top23, §2]). As explained in [LGPV13, Proposition 5.36],
the corresponding Poisson bracket {−,−}τ is given by

(3.3) {F,G}τ =
1

2

(
{F̃ , G̃}+ {τ ∗F̃ , G̃}

)
where {−,−} denotes the Poisson bracket on W2µ and F̃ , G̃ ∈ O(W2µ) are lifts of
F,G ∈ O(Wτ=1

2µ ). In fact, these two Poisson structures on Wτ=1
2µ coincide up to a

multiple of 2, as follows from [Xu03, Theorem 5.9]. More precisely, one applies loc. cit.
(which, while written in a finite dimensional setting, goes through immediately in our
loop setup) in the case µ = 0, and then deduces the claim for µ > 0 using functoriality
of Dirac reduction for fixed points as described in [Top23, §2].

3.3. Symplectic leaves and their closures.

Definition 3.5. For dominant λ ≥ 2µ write

Sλ
2µ := Ψ−1(Wτ=1

2µ ∩G[z]zλG[z])

for Ψ as in (3.2) and consider the closed subset S≤λ
2µ =

⋃
γ≤λ S

γ
2µ equipped with the

reduced scheme structure.

Recall from [KWWY14, Theorem 2.5] that the intersections W2µ ∩ G[z]zλG[z] are
symplectic leaves inside W2µ. These exhaust all symplectic leaves meeting G[z, z−1].
It follows from [LGPV13, Proposition 5.26] that the connected components of Wτ=1

2µ ∩
G[z]zλG[z] are then the symplectic leaves in Wτ=1

2µ . The same is therefore true of the

Sλ
2µ.

Proposition 3.6. If Sλ
2µ ̸= ∅ then λ = η + w(η) for some η ∈ X∗(T )

+ and some

involution w ∈ W (i.e. w2 = 1). If one can take w with at least one fixed point then

Sλ
2µ = K0\ (Kxuη ∩Grµ)
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for any x ∈ G with τ(x)x ∈ N(T ) lifting w. Otherwise there are x± ∈ G with
τ(x±)x± ∈ N(T ) lifting w so that K0\ (Kx±uη ∩Grµ) are distinct—in this case Sλ

2µ is
the disjoint union of these two intersections.

Note that if λ =
∑

1≤i≤n λiϵi then λ = η + w(η) as in the Proposition 3.6 if and
only if the number of λi equal any given odd number is even. The second case of
Proposition 3.6 occurs when every λi is odd (and is therefore only possible when n is
even and ≥ 4).

Proof. Consideration of the map (3.2) shows that K0q ∈ K0\Grµ lies inside Sλ
2µ if and

only if τ(q0)q0 ∈ G[z]zλG[z] for any q0 ∈ G((z−1)) representing q ∈ Grµ. Notice this
implies K0q ∩Grthin ̸= ∅.

On the other hand, [DS03, Theorem 5.2] shows that any q ∈ Grthin can be represented
by q0 ∈ G[z, z−1] with τ(q0)q0 = ẇzλ where

• λ = (λ1, . . . , λn) ∈ X∗(T )
+,

• ẇ ∈ N(T )∩Gτ represents an involution w ∈ W with w(λ) = λ and whose fixed
points are exactly the i ∈ {1, . . . , n} with λi ∈ 2Z and with w(λ) = λ.

This immediately implies λ = η + w(η) for some η ∈ X∗(T )
+. Now every element in

N(T )∩Gτ can be expressed as τ(x)x for some x ∈ G. Applying this to (−1)ηλẇ allows
us to write ẇzλ = τ(xzη)xzη. We conclude that the K-orbit through q equals Kxzη.
Consequently,

Sλ
2µ = K0\

(⋃
Kxuη ∩Grµ

)
with the union running over x ∈ G with τ(x)x ∈ N(T ) lifting w. It only remains to
determine when two such Kxuη coincide, and this reduces to a description of when
the K ∩G-orbits through the class of x inside G/Pη coincide for Pη ⊂ G the parabolic
subgroup stabilising uη ∈ Grthick. Such a description is given in [RS90, Lemma 10.3.1]
and the proposition follows. □

Lemma 3.7. If µ = 0 then each subscheme K0\(Kxzη ∩Grµ) as in Proposition 3.6 is
connected, and hence a symplectic leaf in K0\Grµ.

Proof. It suffices to show Kxzη ∩ Grµ is connected. If it is empty then we are done
so assume not. As Gr0 is open in Grthick this intersection is open inside the K-orbit
through xzη. But K is a connected group and so this orbit is irreducible. The same
must then be true of any non-empty open subset. □

For later use we record the following simple combinatorial consequence of the con-
straint on λ given in Proposition 3.6.

Corollary 3.8. Suppose λ =
∑

1≤i≤n λiϵi can be expressed as η+w(η) for an involution
w ∈ W . If

ri := ⟨ωi,−w0(λ)⟩ = −(λn−i+1 + . . .+ λn)

then ri odd implies λn−i = λn−i+1 are both odd, and so ri+1 is even.
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In general, we do not know whether S≤λ
2µ coincides with the closure of Sλ

2µ in K0\Grµ
whenever Sλ

2µ is non-empty. However, we are able to show this holds in the simplest
case, which is when λ is even, i.e. lies in 2X∗(T )

+.

Theorem 3.9. If λ ∈ 2X∗(T )
+ then S≤λ

2µ equals the closure of Sλ
2µ in K0\Grµ and

coincides with the scheme theoretic image of Grµ ∩Gr≤η → K0\Grµ (recall the notation
from Section 2.2).

Proof. Write Sλ

2µ for the closure of Sλ
2µ in K0\Grµ and set λ = 2η. We then consider

the K0-orbit O0 through uη where K0 := K ∩G[z]. We first claim that the closure of
O0 in Grthick equals Gr≤η. Certainly this closure is contained in Gr≤η and, since the
latter is irreducible, equality follows if O0 and Gr≤η have the same dimension, i.e. if
dimO0 =

∑
α∨>0⟨α∨, η⟩. Since the orbit map identifies O0 ∼= K0/(K0 ∩ zηG[z]z−η)

this dimension can be computed as

dimLieK0/
(
LieK0 ∩ zηg[z]z−η

)
But LieK0 = {x ∈ g[z] | τ(x) = −x} is spanned by z LieT [z2] together with the
elements zi(xα∨ −(−1)rx−α∨) for all i ≥ 0 and α∨ > 0. As η is dominant it follows that
the above quotient is spanned by the images of zi(xα∨ − (−1)rx−α∨) for 0 ≤ i < ⟨α∨, η⟩
and α∨ > 0. This proves the claim.
Next we show that Gr≤λ ∩Grµ equals the closure in Grµ ofO0∩Grµ. SinceO0 is dense

in Gr≤η by the previous paragraph and zµGr0 is open in Grthick with zµGr0 ∩Gr≤η

non-empty, we deduce that O0∩zµGr0 is non-empty and has closure Gr≤η ∩Grµ inside
Grµ. To replace zµGr0 with Grµ in this assertion notice that

zµGr0 ∼= zµU+
0 z

−µT0z
µU−

0
∼=
(
zµU+

0 z
−µ ∩G[z]

)
×Wµ

where the second isomorphism uses Lemma 3.2 to identify U+
0 = U+,−µ × U+

−µ, and so

identify zµU+
0 z

−µ =
(
zµU+

0 z
−µ ∩G[z]

)
× U+

0 . Let p : zµGr0 → Grµ be the resulting

projection. Since Gr≤η is G[z]-stable we have p−1(Gr≤η ∩Grµ) = Gr≤η ∩zµGr0. Now
suppose Z ⊂ Gr≤η ∩Grµ is closed and contains O0 ∩Grµ. By the first assertion of this

paragraph it follows that p−1(Z) = Gr≤η ∩zµGr0 and so Z = O0 ∩ Grµ. This shows
Gr≤η ∩Grµ is the closure of O0 ∩Grµ as required.

Proposition 3.6 shows Sλ
2µ = K0\ (Kzη ∩Grµ) when λ = 2η. The well-known fact

that multiplication G0 × G[z] → G((z−1)) is an open immersion implies the same for
K0 ×K0 → K. As a consequence, the image of O0 ∩ Grµ → K0\Grµ is dense inside
Sλ
2µ. The previous paragraph therefore shows that Gr≤λ ∩Grµ → K0\Grµ factors

through Sλ

2µ with dense image. It follows that Sλ

2µ is the scheme theoretic image of
this morphism.

Now suppose γ ≤ λ with Sγ
2µ non-empty. Combining Proposition 3.6 with the

openness of multiplication K0 × K0 → K shows that, as ν runs over coweights with
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γ = ν + w(ν) with w ∈ W an involution represented by τ(g)g for g ∈ G, the images
of K0xuν ∩Grµ in K0\Grµ are each dense in a union of connected components of Sγ

2µ.

Since γ ≤ λ, we have ν ≤ η. Thus, any suchK0xuν∩Grµ is contained inside Gr≤η ∩Grµ.

We conclude that Sγ
2µ ⊂ Sλ

2µ. This finishes the proof since clearly Sλ

2µ ⊂
⋃

γ≤λ S
γ
2µ. □

For the remaining λ ≥ 2µ, i.e. those not in 2X∗(T )
+ but of the form η+w(η) for an

involution w, we expect that Sλ
2µ is non-empty. Indeed, computations made when µ = 0

suggest that Sλ
2µ is irreducible (except in those cases described in Proposition 3.6) of

dimension ∑
1≤i≤n−1

2⌊ni

2
⌋

for ni defined by λ = 2µ+
∑

1≤i≤n−1 niαi.

3.4. Ideal generators. Our goal in this section is to describe Poisson generators of
the ideal of S≤λ

2µ . We are currently only able to do this when µ = 0 and we impose
this restriction throughout this section. In particular, Ψ : K0\G0 → Gτ=1

0 from (3.2) is
simply the map K0x0 7→ τ(x0)x0.

Notation 3.10. For i-tuples I, J ⊂ {1, . . . , n} recall ∆IJ ∈ O(G0) is defined in Sec-
tion 2.2. Set

∆τ
IJ := ∆IJ ◦Ψ ∈ O(K0\G0)

and ∆
τ,(r)
IJ for the coefficient of z−r in this series. Thus ∆τ

IJ(K0x0) = ∆IJ(τ(x)x).

Of particular relevance will be the functions

A
(r)
i := ∆

τ,(r)
{n−i+1,...,n},{n−i+1,...,n}, B

(r)
i := ∆

τ,(r)
{n−i+1,...,n},{n−i,n−i+2,...,n}

lying inside O(K0\G0)[[z
−1]].

Proposition 3.11. Suppose S ⊂ Sλ
0 is a symplectic leaf with λ =

∑
1≤i≤n λiϵi ∈

X∗(T )
+ not necessarily in 2X∗(T )

+ and set

ri = ⟨ωi,−w0λ⟩ = −(λn + . . .+ λn−i+1)

Then, as functions on S, A(ri+1)
i+1 ̸= 0 if ri+1 is even, and B

(ri+1)
i+1 ̸= 0 if ri+1 is odd.

Before giving the proof recall that if g ∈ G[z]zλG[z] then, for each pair of i-tuples
I, J ⊂ {1, . . . , n}, the minor ∆IJ(g) has z-adic valuation ≥ ⟨ωi,−w0(λ)⟩. Furthermore,
for each 1 ≤ i ≤ n there is an I, J for which this is an equality. In the proof of
Proposition 3.11 we will need the following more specific version of this assertion:

Lemma 3.12. Let λ =
∑

1≤i≤n λiϵi and suppose g ∈ G[z]zλG[z] is such that
∆{n−i+1,...,n},{n−i+1,...,n}(g) has z-adic valuation λn + . . . + λn−i+1. Then there are
1 ≤ r, s ≤ n− i for which

∆{r,n−i+1,...,n},{s,n−i+1,...,n}(g)
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has z-adic valuation λn + . . .+ λn−i.

Proof. The hypothesis on g says that if g = (X Y
Z W ) with W an i − 1 by i − 1 matrix

then det(W ) has z-adic valuation λn + . . . + λn−i+1. Since the maximal minors of Z
and Y have z-adic valuation at least that of detW we can find matrices Y ∗, Z∗ so that

g′ :=

(
1 Y ∗

0 1

)(
X Y
Z W

)(
1 0
Z∗ 1

)
=

(
X ′ 0
0 W

)
Note ∆{r,n−i+1,...,n},{s,n−i+1,...,n}(g

′) = ∆{r,n−i+1,...,n},{s,n−i+1,...,n}(g) for any 1 ≤ r, s ≤
n − i, as can be seen by considering the action of ( 1 Z∗

0 1 ) and ( 1 0
Y ∗ 1 ) on the relevant

element inside
∧i Cn. On the other hand, the fact that (X′ 0

0 W ) ∈ G[z]zλG[z] ensures
∆{r,n−i+1,...,n},{s,n−i+1,...,n}(g

′) has z-adic valuation λn + . . . + λn−i for some 1 ≤ r, s ≤
n− i. □

Proof of Proposition 3.11. Argue by induction on i+1. If ri is even (or i = 0) then we

can assume the existence ofK0x0 ∈ K0\G0 with A
(ri)
i (K0x0) ̸= 0. Applying Lemma 3.12

therefore produces 1 ≤ r, s ≤ n− i with

∆
τ,(ri+1)
{r,n−i+1,...,n},{s,n−i+1,...,n}

non-vanishing on K0x0. To prove the proposition in this case we will vary the point
K0x0 inside S by flowing along suitable Hamiltonian vector fields.

More precisely, we will use the following observation: If f ∈ O(K0\G0) and x ∈ Sλ
0

is a closed point with

{f, g}τ (x) ̸= 0

for some g ∈ O(K0\G0) then there exists a closed point y ∈ Sλ
0 with f(y) ̸= 0. Indeed,

Sλ
0 being a symplectic leaf means that the tangent space TxSλ

0 is spanned by the value
at x of the Hamiltonian vector fields on K0\G0, while {f, g}τ (x) is by definition the
value of f on the Hamiltonian vector field associated to g at x. Since Sλ

0 is smooth,
and hence reduced, it follows that the vanishing locus of f has codimension 1 in Sλ

0 .

Step 1. First, we claim x0 can be chosen so that at least one of r and s equals 1.
Suppose for a contradiction that this is not the case. Then (3.3) and Lemma 3.1
together give

{∆τ,(ri+1)
{n−i,n−i+1,...,n},{s,n−i+1,...,n},∆

τ,(1)
n−i,r}τ =

=
1

2
{∆(ri+1)

{n−i,n−i+1,...,n},{s,n−i+1,...,n},∆
(1)
n−i,r} ◦Ψ

− 1

2
{∆(ri+1)

{n−i,n−i+1,...,n},{s,n−i+1,...,n},∆
(1)
r,n−i} ◦Ψ

=
1

2
∆

τ,(ri+1)
{r,n−i+1,...,n},{s,n−i+1,...,n}
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as functions on S (we remind the reader here that {−,−}τ denotes the Poisson bracket
on K0\G0 pulled back via Ψ from that on Gτ=1

0 obtained via Dirac reduction from the

bracket {−,−} on G0). But by assumption ∆
τ,(ri+1)
{r,n−i+1,...,n},{s,n−i+1,...,n} does not vanish

on S and so the argument of the previous paragraph produces a point in S on which

∆
τ,(ri+1)
{n−i,n−i+1,...,n},{s,n−i+1,...,n} does not vanish.

Step 2. If ri+1 is even then

τ ∗∆
(ri+1)
{n−i,...,n},{n−i,...,n} = ∆

(ri+1)
{n−i,...,n},{n−i,n−i+1,...,n}

inside O(G0). This, together with (3.3) and Lemma 3.1 combine to give

{∆τ,(ri+1)
{n−i,...,n},{n−i,...,n},∆

τ,(1)
s,n−i}τ = {∆(ri+1)

{n−i,...,n},{n−i,n−i+1,...,n},∆
(1)
s,n−i} ◦Ψ

= ∆
(τ,ri+1)
{n−i,...,n},{s,n−i+1,...,n}

as functions on S. By Step 1 we know this function is non-vanishing, and so we produce

a point of S on which ∆
τ,(ri+1)
{n−i,n−i+1,...,n},{n−i,n−i+1,...,n} does not vanish.

Step 3. If instead ri+1 is odd then we can assume s ̸= n− i− 1 (since otherwise we are

done) and s ̸= n− i (since then ∆
τ,(ri+1)
{n−i,n−i+1,...,n},{s,n−i+1,...,n} = 0). Using (3.3) together

with Lemma 3.1 then gives the identity

{∆τ.(ri+1)
{n−i,...,n},{n−i−1,n−i+1,...,n},∆

(1)
s,n−i−1}τ

= {∆(ri+1)
{n−i,...,n},{n−i−1,n−i+1,...,n},∆

(1)
s,n−i−1} ◦Ψ− {∆(ri+1)

{n−i,...,n},{n−i−1,n−i+1,...,n},∆
(1)
n−i−1,s} ◦Ψ

= −∆
τ,(ri+1)
{n−i,...,n},{s,n−i+1,...,n}

Again, by Step 1 we know this function is non-vanishing, and so we produce a point of

S on which ∆
τ,(ri+1)
{n−i,n−i+1,...,n},{n−i−1,n−i+1,...,n} does not vanish.

Step 4. We conclude with the case ri is odd. By assumption Sλ
0 is non-empty and

so Corollary 3.8 forces ri+1 to be even and λn−i+1 = λn−i to be odd. The inductive
hypothesis gives K0x ∈ K0\G0 for which the series valued function

∆τ
{n−i+1,...,n},{n−i,n−i+2,...,n}

has z-adic valuation ri. On the other hand, the Desnanot–Jacobi formula [VV23] gives

(3.4) ∆τ
{n−i,...,n},{n−i,...,n}∆

τ
{n−i+2,...,n},{n−i+2,...,n} = α− β

for
α = ∆τ

{n−i+1,...,n},{n−i+1,...,n}∆
τ
{n−i,n−i+2,...,n},{n−i,n−i+2,...,n},

β = ∆τ
{n−i,n−i+2,...,n},{n−i+1,...,n}∆

τ
{n−i+1,...,n},{n−i,n−i+2,...,n}

A priori the two minors in α have z-adic valuation ≥ ri. In fact this inequality is strict
because ri is odd and so τ -invariance forces the coefficient of z−ri to vanish. Therefore,
the right hand side of (3.4) has z-adic valuation 2ri. But recall λn−i+1 = λn−i and
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so 2ri = ri+1 + ri−1. We conclude that ∆τ
{n−i,...,n},{n−i,...,n} and ∆τ

{n−i+2,...,n},{n−i+2,...,n},
which respectively have z-adic valuations ≥ ri+1 and ≥ ri−1, in fact have exact z-adic

valuations ri+1 and ri−1. In particular, A
(ri+1)
i+1 ̸= 0 on S and we are done. □

Corollary 3.13. Assume λ ∈ X∗(T ) can be written as η + w(η) for an involution

w ∈ W . Then the ideal defining S≤λ
0 inside O(K0\G0) is the radical of the ideal

Poisson generated by the functions

• A
(r)
i for 1 ≤ i ≤ n− 1 and r > ⟨ωi,−w0λ⟩.

Proof. Write Jλ
0 for ideal Poisson generated by the elements described, and V (Jλ

0 ) ⊂
K0\Gr0 for its vanishing locus. Clearly S≤λ

0 ⊂ V (Jλ
0 ) because if I, J are i-tuples then

∆
τ,(r)
IJ vanishes on Sλ

0 whenever r > ⟨ωi,−w0λ⟩.
For the opposite inclusion we claim that Jλ

0 contains all ∆
τ,(r)
ij with 1 ≤ i, j ≤ n and

sufficiently large r. This ensures that the image of V (Jλ
0 ) under Ψ lies inside Grthin,

and so that V (Jλ
0 ) is a union of the symplectic leaves S ⊂ Sγ

0 for varying γ. Granting
this, the corollary follows from Proposition 3.11. Indeed, if γ =

∑
1≤i≤n γiϵi > λ =∑

1≤i≤n λiϵi then there is a smallest i with r′i := ⟨ωi,−w0δ⟩ > ⟨ωi,−w0λ⟩ := ri. If r′i

is even then Proposition 3.11 shows A
(r′i)
i ̸= 0 on S and so S ̸⊂ V (Jλ

0 ). If r′i is odd
then Corollary 3.8 implies r′i+1 = r′i − γn−i = r′i − γn−i+1 is even. On the other hand,
since r′i−1 = ri−1 and r′i > ri we must have −γn−i+1 > −λn−i+1. Thus, r

′
i+1 > ri+1 and

Proposition 3.11 shows A
(r′i+1)

i ̸= 0 on S, hence S ̸⊂ V (Jλ
0 ) and we are done.

It only remains to prove our claim. If i, j ̸= 1 and r is even then Lemma 3.1 combined

with (3.3) gives {∆τ,(r)
1,1 ,∆

τ,(1)
1,j }τ = ∆

τ,(r)
1,j and

{∆τ,(r)
1,j ,∆

τ,(1)
i,1 }τ =

1

2
{∆(r)

1,j ,∆
(1)
i,1 } ◦Ψ+

1

2
{∆(r)

j,1 ,∆
(1)
i,1 } ◦Ψ =

1

2

(
δij∆

τ,(r)
11 −∆

τ,(r)
ij

)
This shows Jλ

0 contains ∆
τ,(r)
ij for all even r > r1. On the other hand, if r is even then

(3.3) combined with Lemma 3.1 gives

{∆τ,(r)
ij ,∆

τ,(2)
ll }τ = {∆(r)

ij ,∆
(2)
ll }◦Ψ = −∆

τ,(r+1)
il δlj+∆

τ,(r+1)
lj δil−∆

τ,(r)
il ∆

τ,(1)
lj +∆

τ,(r)
lj ∆

τ,(1)
il

We’ve already seen that the final two terms on the right lie in Jλ
0 . Therefore ∆

τ,(r+1)
il δlj−

∆
τ,(r+1)
lj δil ∈ Jλ

0 . It follows that ∆
τ,(r+1)
il ∈ Jλ

0 if i ̸= l and r > r1 is even. Since

∆
τ,(r+1)
ii = 0 for r even this finishes the proof. □

We emphasise that it is essential to consider the radical of the ideal in Corollary 3.13.

For example, suppose λ ∈ 2X∗(T )
+. Then B

(r1+1)
1 vanishes on Sλ

0 but the ideal Poisson

generated by the A
(r)
i ’s for r > ri only consists of functions with loop grading ≥ r1 +2

(since the bracket has degree−1 for this grading). We believe that this non-reducedness

can be eliminated by adding the B
(ri+1)
i ’s to the Poisson generating set whenever ri is

even.
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Conjecture 3.14. The ideal of O(K0\G0) which is Poisson generated by the functions

• A
(r)
i for 1 ≤ i ≤ n− 1 and r > ⟨ωi,−w0λ⟩,

• B
(ri+1)
i whenever ri = ⟨ωi,−w0(λ)⟩ is even

is reduced, and hence is the ideal defining S≤λ
0 inside K0\G0.

4. Shifted Yangians

Below we recall the definitions and main properties of shifted Yangians for sln.

4.1. Drinfeld presentation. Given µ ∈ X∗(T )
+, let

Hi(u) = uα∨
i (µ) + ℏ

∞∑
r=−α∨

i (µ)

H
(r)
i u−r−1.

We call H i(u) =
∑∞

r=0H
(r)
i u−r−1 the principal part of Hi(u) (and use analogous nota-

tion for principal parts of other series). Also let

Ei(u) = ℏ
∞∑
r=0

E
(r)
i u−r−1, Fi(u) = ℏ

∞∑
r=0

F
(r)
i u−r−1.

The µ-shifted Yangian Yµ,ℏ associated to sln is the C[ℏ]-algebra generated byH
(r)
i , E

(s)
i ,

F
(s)
i (with i ∈ I, r ≥ −α∨

i (µ), s ∈ N), subject to the following defining relations:

[Hi(u), Ej(v)] = −1
2
aijℏ

[Hi(u), Ej(u)− Ej(v)]+
u− v

,

[Hi(u), Fj(v)] =
1
2
aijℏ

[Hi(u), Fj(u)− Fj(v)]+
u− v

,

[Ei(u), Fj(v)] = δijℏ
H i(u)−H i(v)

u− v
,

[Ei(u), Ei(v)] = −ℏ
(Ei(u)− Ei(v))

2

u− v
,

[Fi(u), Fi(v)] = ℏ
(Fi(u)− Fi(v))

2

u− v
,

[Ei(u), Ej(v)] =
1
2
ℏ
[Ei(u), Ej(u)− Ej(v)]+

u− v
− [E

(0)
i , Ej(u)− Ej(v)]

u− v
(|j − i| = 1),

[Fi(u), Fj(v)] = −1
2
ℏ
[Fi(u), Fj(u)− Fj(v)]+

u− v
− [F

(0)
i , Fj(u)− Fj(v)]

u− v
(|j − i| = 1),

Symu1,u2
[Ei(u1), [Ei(u2), Ej(v)]] = 0 (|j − i| = 1),

Symu1,u2
[Ei(u1), [Ei(u2), Ej(v)]] = 0 (|j − i| = 1),
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[Ei(u), Ej(v)] = [Fi(u), Fj(v)] = 0 (aij = 0).

We denote the specialization to ℏ = 1, i.e., Yµ,ℏ/(ℏ − 1)Yµ,ℏ, as Yµ. If µ = 0, we also
abbreviate Yℏ = Y0,ℏ and Y = Y0.

4.2. PBW theorem. For each positive root β∨ = αj + αj+1 + · · · + αi (j ≤ i), and
r ≥ 0, set

E
(r)
β∨ = [[· · · [E(r)

j , E
(0)
j+1], · · · , E

(0)
i−1], E

(0)
i ],

F
(r)
β∨ = [F

(0)
i , [F

(0)
i−1, · · · , [F

(0)
j+1, F

(r)
j ] · · · ]].

We call elements E
(r)
β∨ , F

(r)
β∨ and H

(si)
i , as β∨ ranges over ∆+, i over I, r ≥ 0 and

si ≥ −α∨
i (µ), PBW variables. Fix any total ordering on the set of PBW variables.

Theorem 4.1 ([FT19, Theorem 2.55]). Ordered PBW monomials in the PBW vari-
ables form a basis of Yµ,ℏ as a free C[ℏ]-module, as well as a basis of Yµ as a free
C-module.

As a consequence of Theorem 4.1 (c.f. [FKP+18, Corollary 3.16]), given anti-
dominant coweights µ1, µ2, the shift homomorphisms

(4.1) ι(µ, µ1, µ2) : Yµ → Yµ+µ1+µ2

defined by

H
(r)
i 7→ H

(r−α∨
i (µ1+µ2))

i , E
(r)
i 7→ E

(r−α∨
i (µ1))

i , F
(r)
i 7→ F

(r−α∨
i (µ2))

i .

are injective. In particular, if µ1 + µ2 = −µ, then ι(µ, µ1, µ2) yields an embedding
Yµ ↪→ Y .

4.3. Canonical filtration. For the purpose of quantizing slices in the affine Grass-
mannian, one requires a certain subalgebra of Yµ,ℏ. Namely, let Yµ be the C[ℏ]-
subalgebra of Yµ,ℏ generated by

{ℏE(r)
β∨}r≥0

β∨∈∆+ ∪ {ℏF (r)
β∨ }r≥0

β∨∈∆+ ∪ {ℏH(si)
i }si≥−α∨

i (µ)

i∈I .

This subalgebra also admits an alternative description as a Rees algebra, which we now
recall. By [FKP+18, §5.4], given a pair of coweights µ1, µ2 such that µ1+µ2 = µ, there
is a filtration F •

µ1,µ2
on Yµ determined by

degE
(r)
β∨ = β∨(µ1)+ r+1, degF

(r)
β∨ = β∨(µ2)+ r+1, degH

(r)
i = α∨

i (µ)+ r+1.

According to [FKP+18], this defines an algebra filtration, is independent of the choice
of PBW variables and their ordering, and the corresponding Rees algebra ReesF

•
µ1,µ2 Yµ

is independent of the choice of coweights µ1, µ2.
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Theorem 4.2 ([FT19, Theorem 2.57]). For any µ ∈ X∗(T )
+, there is a canonical

C[ℏ]-algebra isomorphism

Yµ
∼= ReesF

•
µ1,µ2 Yµ.

Passing to the semi-classical limit, there are canonical isomorphisms

Yµ/ℏYµ
∼= ReesF

•
µ1,µ2 Yµ/ℏReesF

•
µ1,µ2 Yµ

∼= grF
•
µ1,µ2 Yµ.

Moreover, by [FKP+18, Proposition 5.7], grF
•
µ1,µ2 Yµ is a commutative algebra. It is

also naturally a Poisson algebra, with the Poisson bracket given by

{a, b} = ℏ−1[â, b̂] mod ℏYµ,

for any lifts â, b̂. Finally, we remark that the shift homomorphisms (4.1) induce
monomorphisms of Poisson algebras

Yµ/ℏYµ ↪→ Yµ+µ1+µ2/ℏYµ+µ1+µ2 .

4.4. Quantum duality. When µ = 0, the algebra Y = Y0 can be identified with the
Drinfeld–Gavarini dual of Yℏ. Let us first recall the general definition of this notion.
Let a be a Lie algebra over C, and suppose that A is a deformation–quantization of

the Hopf algebra U(a), i.e., A is a Hopf algebra over C[ℏ], and there is an isomorphism
of Hopf algebras A/ℏA ∼= U(a). Let ∆ and ϵ be the coproduct and counit of A,
respectively. For m ≥ 0, define inductively ∆m : A → A⊗n by

∆0 = ϵ, ∆1 = id, ∆m = (∆⊗ id⊗(m−2)) ◦∆m−1.

Also define

δm : A → A⊗m, δm = (id−ϵ)⊗m ◦∆m.

The Drinfeld–Gavarini dual A′ of A is the following sub-Hopf algebra:

A′ = {a ∈ A | δm(a) ∈ ℏmA⊗m for all m ∈ N}.

The importance of A′ derives from the fact that, according to the quantum duality
principle [Gav02, Theorem 1.6], A′ is a deformation–quantization of the coordinate
ring of an algebraic group Ga∗ associated to the dual Lie algebra a∗.

Let us now return to the specific setting of the Yangian Yℏ. It is a graded Hopf
algebra, with deg(ℏ) = 1 and deg(x(r)) = r for x = Hi, Eβ∨ , Fβ∨ . The description of
the Hopf algebra structure can be found in, e.g., [FT19, (A.16)–(A.17)]. The Yangian
is a deformation–quantization of the universal enveloping algebra of the current Lie
algebra, i.e., Yℏ/ℏYℏ ∼= U(sln[t]). The latter is an isomorphism of graded Hopf algebras
if U(sln[t]) is endowed with the loop grading.

Theorem 4.3 ([FT19, Corollary A.22]). There is a canonical C[ℏ]-algebra isomorphism

Y ′
ℏ
∼= Y.
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4.5. RTT presentation. The RTT Yangian Ỹ rtt
ℏ for gln is the algebra generated by

t
(k)
ij , where k ≥ 1 and 1 ≤ i, j ≤ n, subject to the relations

(u− v)[tij(u), tkl(v)] = ℏ(tkj(u)til(v)− tkj(v)til(u)),

where

tij(u) = δij + ℏ
∑
r>0

t
(r)
ij u

−r.

Writing

T (u) =
n∑

i,j=1

eij ⊗ tij(u), P =
n∑

i,j=1

eij ⊗ eji R(u) = 1− Pu−1,

where eij are the usual matrix units, these relations can be rewritten as

R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v).

For any formal series f(u) ∈ 1 + ℏ
u
C[ℏ][[u−1]], the assignment

(4.2) T (u) 7→ f(u)T (u)

defines an algebra automorphism of Ỹ rtt
ℏ . The RTT Yangian Y rtt

ℏ for sln is the C[ℏ]-
subalgebra of Ỹ rtt

ℏ consisting of all the elements fixed under all automorphisms (4.2).

Let Ỹrtt be the C[ℏ]-subalgebra of Ỹ rtt
ℏ generated by {ℏt(r)ij }

r≥1
1≤i,j≤n, and let Yrtt =

Ỹrtt ∩ Y rtt
ℏ .

Theorem 4.4. There is a C[ℏ]-algebra isomorphism Yℏ ∼= Y rtt
ℏ , which restricts to an

isomorphism Y ∼= Yrtt.

Proof. The isomorphism is constructed by Gauss decomposition, see, e.g., [Mol07,
§1.11]. For the latter statement, see [FT19, Proposition 2.34]. □

In light of Theorem 4.4, we will, from now on, just use the notations Yℏ and Y.

5. Shifted twisted Yangians

Below we recall the definition of shifted twisted Yangians of type AI (in the current
presentation) and their main properties. While we are principally interested in the
twisted Yangians associated to sln, we will also need their gln-version. The latter
has the advantage that it is easier to verify that the gln-version of the relations are
preserved by the twisted GKLO homomorphism defined in §7.
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5.1. Generators and relations. The Drinfeld presentations of the twisted Yangians
of split type associated to gln and sln (i.e., type AI) were first found in [LWZ23, Theorem
5.1, Theorem 5.3] via Gauss decomposition. A generalization to all simple split types,
excluding G2, was established in [LWZ25, §4]. Presentations in terms of generating
currents, which are more convenient for our purposes, can be found in [LWZ23, Remark
4.12] and [LWZ25, §4.3]. Below, in the gln case, we use a presentation with a slightly
different choice of Cartan generators than in [LWZ23, Theorem 5.1], which can be found
in [LPT+25, Proposition 5.3]. The definition of shifted twisted Yangians, based on the
Drinfeld presentation, was first given in [TT24, §3.2]. Later, an equivalent parabolic
presentation was given in [LPT+25, §8]. Below, we pursue the Drinfeld approach.

Given µ ∈ X∗(T )
+, let

hi(u) = u−2ϵ∨i (µ) + ℏ
∞∑

r=2ϵ∨i (µ)

h
(r)
i u−r−1, bj(u) = ℏ

∞∑
r=0

b
(r)
j u−r−1,

for i ∈ Ĩ and j ∈ I. We also set

h̃i(u) = (hi(u))
−1, zi(u) = h̃i(u− 1

2
ℏ)hi+1(u).

Definition 5.1. The µ-shifted twisted Yangian twỸµ,ℏ of split type associated to gln is

the C[ℏ]-algebra generated by h
(r)
i , h̃

(s)
i , b

(t)
j (with i ∈ Ĩ, j ∈ I, r ≥ 2ϵ∨i (µ), s ≥ −2ϵ∨i (µ)

and t ∈ N), subject to the following defining relations:

zi(u) = zi(−u),(5.1)

[hi(u), hj(v)] = 0,(5.2)

[hi(u), bj(v)] =
δijℏ

u− v + 1
2
ℏ
(
bi(u+ 1

2
ℏ)− bi(v)

)
hi(u)(5.3)

+
δijℏ

u+ v + 1
2
ℏ
hi(u)

(
bi(v)− bi(−u− 1

2
ℏ)
)

+
δi,j+1ℏ
u+ v

hi(u)
(
bj(−u)− bj(v)

)
+

δi,j+1ℏ
u− v

(
bj(v)− bj(u)

)
hi(u),

[bi(u), bj(v)] = 0 if |i− j| > 1,(5.4)

[bi(u), bi(v)] =
ℏ

v − u

(
bi(v)− bi(u)

)2
+

ℏ
u+ v

(
zi(v)− zi(u)

)
,(5.5)

(u− v)[bi(u), bi+1(v)] = − 1
2
ℏ
(
bi(u)bi+1(v) + bi+1(v)bi(u)

)
(5.6)

+ [b
(0)
i , bi+1(v)] + [b

(0)
i+1, bi(u)],
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and

(u1 + u2) Symu1,u2

[
bi(u1),

[
bi(u2), bj(t)

]]
=(5.7)

= 4ℏ
∑

u=u1,u2

u(t− ℏ) zi(u)bj(t)− u(t+ ℏ) bj(t)zi(u)
4u2 − ℏ2

if |i− j| = 1.

We denote the specialization to ℏ = 1 as twỸµ. The usual unshifted twisted Yangian

is twỸℏ =
twỸ0,ℏ. The µ-shifted twisted Yangian twYµ,ℏ of split type associated to sln is

the subalgebra of twỸµ,ℏ generated by b
(s)
j and z

(r)
i (i ∈ Ĩ, s ≥ 0, r ≥ −2α∨

i (µ)). We
also write twYµ for the specialization of twYµ,ℏ at ℏ = 1, and twYℏ =

twY0,ℏ.

Consider briefly the special case when µ = 0. Let Z(twỸℏ) denote the centre of
twỸℏ.

Proposition 5.2. There is an isomorphism

twỸℏ ∼= twYℏ ⊗C[ℏ] Z(
twỸℏ).

Moreover, Z(twỸℏ) = C[ℏ][c1, c3, · · · ], where

(5.8) c(u) = 1 + ℏ
∑
r≥0

cru
−r−1 := h1(u)h2(u− ℏ) · · ·hn(u− ℏ(n− 1)).

Proof. See [Mol07, Theorems 2.8.2, 2.9.2]. □

5.2. PBW theorem. For each positive root β∨ = αj + αj+1 + · · · + αi (j ≤ i), and
r ≥ 0, set

b
(r)
β∨ = [b

(0)
i , [b

(0)
i−1, · · · , [b

(0)
j+1, b

(r)
j ] · · · ]].

Proposition 5.3. The algebra twYµ has a C-basis consisting of ordered monomials in
the elements

{b(r)β∨}r≥0
β∨∈∆+ ∪ {z(2si+1)

i }si≥−α∨
i (µ)

i∈I .

The same set is also a C[ℏ]-basis of twYµ,ℏ.

Proof. This is proven in [LWZ23, Theorem 4.12] for the unshifted case, and in [LPT+25,
Theorem 8.2, Proposition 8.9] and [TT24, Theorem 3.2] for the shifted case. For
similar arguments in the untwisted case, see, e.g., [FKP+18, Corollary 3.15] and [FT19,
Theorem 2.55]. □

As a consequence of Theorem 5.3, for any η ∈ X∗(T )
+ with η ≤ µ, the shift homo-

morphism

(5.9) twι(µ, η) : twYµ,ℏ → twYµ−η,ℏ, b
(r)
i 7→ b

(r+α∨
i (η))

i , z
(r)
i 7→ z

(r+2α∨
i (η))

i

is injective. If η = µ, we abbreviate twι(µ) = twι(µ, µ). In particular, twYµ,ℏ can be
realized as a subalgebra of the unshifted twisted Yangian twYℏ via twι(µ).
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5.3. Canonical filtration. We are primarily interested in the following subalgebra of
the shifted twisted Yangian.

Definition 5.4. Let twYµ be the C[ℏ]-subalgebra of twYµ,ℏ generated by

{ℏb(r)β∨}r≥0
β∨∈∆+ ∪ {ℏz(2si+1)

i }si≥−α∨
i (µ)

i∈I .

We will now give an alternative description of twYµ as a Rees algebra, in analogy to
the untwisted case. There is a filtration F •

µ on twYµ,ℏ determined by

deg b
(r)
β∨ = β∨(µ) + r + 1, deg z

(r)
i = 2α∨

i (µ) + r + 1.

Theorem 5.5. For any µ ∈ X∗(T )
+, there is a canonical C[ℏ]-algebra isomorphism

twYµ
∼= ReesF

•
µ twYµ.

Proof. The proof relies on a comparison of Rees algebras with respect to the loop
and canonical filtrations, and is formally the same as the proof of [FT19, Theorem
A.32]. □

Passing to the semi-classical limit, there are canonical isomorphisms
twYµ/ℏtwYµ

∼= ReesF
•
µ twYµ/ℏReesF

•
µ twYµ

∼= grF
•
µ twYµ.

Moreover, by [TT24, Lemma 3.3], grF
•
µ twYµ is a commutative algebra. It is also natu-

rally a Poisson algebra, with the Poisson bracket given by

{a, b} = ℏ−1[â, b̂] mod ℏtwYµ,

for any lifts â, b̂. Finally, we remark that the shift homomorphisms (5.9) induce
monomorphisms of Poisson algebras

twι(µ) : twYµ/ℏtwYµ ↪→ twYµ−η/ℏtwYµ−η.

5.4. Reflection equation presentation. The RTT twisted Yangian twỸ rtt
ℏ of split

type associated to gln is the algebra generated by s
(k)
ij , where k ≥ 1 and 1 ≤ i, j ≤ n,

subject to the relations

(u2 − v2)[sij(u), skl(v)] = ℏ(u+ v)(skj(u)sil(v)− skj(v)sil(u))

− ℏ(u− v)(sik(u)sjl(v)− ski(v)slj(u))

+ ℏ2(ski(u)sjl(v)− ski(v)sjl(u))

sji(−u) = sij(u) + ℏ
sij(u)− sij(−u)

2u
.

Writing

S(u) =
n∑

i,j=1

eij ⊗ sij(u), sij(u) = δij +
∑
k>0

s
(k)
ij u−k
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these relations can also be presented in matrix form:

R(u− v)S1(u)R
t(−u− v)S2(v) = S2(v)R

t(−u− v)S1(u)R(u− v),

St(−u) = S(u) + ℏ
S(u)− S(−u)

2u
.

By [Mol07, Theorem 2.4.3], there is an injective algebra homomorphism

twỸ rtt
ℏ ↪→ Ỹ rtt

ℏ , S(u) 7→ T t(−u)T (u).

Moreover, by [Mol07, Theorem 2.10.1], this embedding endows twỸ rtt
ℏ with the structure

of a right coideal subalgebra.

Theorem 5.6 ([Mol07, Corollary 2.4.4, Remark 2.4.5]). Ordered monomials in the
PBW variables

{s(r)ij }
r≥1
i>j ∪ {s(2r)ii }r≥1

i∈I

form a basis of twỸ rtt
ℏ as a free C[ℏ]-module, as well as a basis of twỸ rtt as a free

C-module.

We rely on the following key result linking the RTT and current realizations of the
twisted Yangian.

Theorem 5.7 ([LWZ23, Theorem 5.1]). There is a canonical isomorphism

(5.10) Υ: twỸℏ
∼−→ twỸ rtt

ℏ

from the twisted Yangian twỸℏ in the Drinfeld presentation (Definition 5.1) to the RTT

twisted Yangian twỸ rtt
ℏ , given by Gauss decomposition.

Let twỸrtt be the C[ℏ]-subalgebra of twỸ rtt
ℏ generated by {ℏs(r)ij }

r≥1

i,j∈Ĩ. Recall that,

when µ = 0, we abbreviate twỸ = twỸ0.

Proposition 5.8. The isomorphism (5.10) restricts to an isomorphism

Υ: twỸ
∼−→ twỸrtt.

Proof. The proof is entirely analogous to the proof of [FT19, Proposition 2.34]. □

5.5. Ciccoli-Gavarini duality. When µ = 0, the algebra twY0 =
twY0 can be identi-

fied with the Ciccoli–Gavarini dual of twYℏ. Let us first recall the general definition of
this concept. We continue to use the notation from §4.4.
Let b ⊂ a be a Lie coideal, and suppose that B is a compatible deformation–

quantization of U(b), i.e., B ⊂ A is a coideal subalgebra over C[ℏ], and there is an
isomorphism of Hopf algebras B/ℏB ∼= U(b). The Ciccoli–Gavarini dual B↰ of B is
the following coideal subalgebra of A′:

B↰ = {a ∈ B | δm(a) ∈ ℏmA⊗(m−1) ⊗B for all m ∈ N} = B ∩ A′.
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The importance of B↰ stems from the fact that, according to the quantum duality
principle [CG06, Theorem 3.3], B↰ is a deformation–quantization of the coordinate
ring of the homogeneous space Ga∗/Gb⊥ .
Let us now return to the specific setting of the twisted Yangian twYℏ. It is a coideal

subalgebra of Yℏ, and admits a grading with deg(ℏ) = 1 and deg(x(r)) = r, for x =

zi, bβ∨ (or deg s
(r)
ij = r − 1 in the RTT presentation). The description of the coideal

algebra structure can be found in, e.g., [Mol07, (2.64)]. The twisted Yangian is a
deformation–quantization of the universal enveloping algebra of the twisted current
Lie algebra, i.e., twYℏ/ℏtwYℏ ∼= U(sln[t]

σ), where σ is the composition of the Cartan
involution with the map t 7→ −t. This isomorphism is an isomorphism of graded Hopf
algebras if U(sln[t]

σ) is endowed with the loop grading.

Theorem 5.9. There is a canonical C[ℏ]-algebra isomorphism

twY ↰ℏ
∼= twY0.

Proof. The claim will follow from Proposition 5.8 if we can show twỸ ↰ℏ
∼= twỸrtt. For

the latter, one can apply the same argument as in [FT19, Theorem A.26]. □

6. Sklyanin minors and ABCD presentation

Drinfeld’s new realization of the Yangian admits a natural description in terms of
quantum minors [Dri87a, NT94, GKLO05]. Below we deduce an analogous description
of the current realization of the twisted Yangian from [LWZ23] in terms of Sklyanin
minors. We assume µ = 0 throughout.

6.1. Current generators as Sklyanin minors. For the sake of conciseness, we freely
use the standard definition, properties and notation for the Sklyanin determinant and
Sklyanin minors, as in, e.g., [Mol07, §2.5–§2.6], without recalling these in detail.
Recall the series fi(u), ei(u), di(u) constructed by Gauss decomposition in [LWZ23,

(3.1)–(3.3)]. The following proposition allows us to express the current generators of
the twisted Yangian in terms of Sklyanin minors.

Proposition 6.1. We have:

fi(u) = s1...i−1,i+1
1...i (u+ ℏ(i− 1))(s1...i1...i(u+ ℏ(i− 1)))−1,

ei(u) = (s1...i1...i(u+ ℏ(i− 1)))−1s1...i1...i−1,i+1(u+ ℏ(i− 1)),

di(u) = s1...i1...i(u+ ℏ(i− 1))(s1...i−1
1...i−1(u+ ℏ(i− 1)))−1.

Hence

bi(u) = fi(u− ℏi
2
) = s1...i−1,i+1

1...i (u+ ℏi
2
− ℏ)(s1...i1...i(u+ ℏi

2
− ℏ))−1,

zi(u) =
di+1(u− ℏi

2
)

di(u− ℏi
2
)

=
s1...i−1
1...i−1(u+ ℏi

2
− ℏ)s1...i+1

1...i+1(u+ ℏi
2
)

s1...i1...i(u+ ℏi
2
− ℏ)s1...i1...i(u+ ℏi

2
)

.
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Proof. This follows immediately from the formulae in the proof of [LWZ23, Corollary
3.2] and [Mol07, Lemma 2.14.2]. □

We remark that, since ei(u) = fi(−u− ℏi), we also get bi(−u) = ei(u− ℏi
2
).

6.2. Relations. In this subsection, we will describe some of the relations between the
Sklyanin minors. Define:

Ai(u) = s1...i1...i(u+ ℏi
2
− ℏ), Bi(u) = s1...i1...i−1,i+1(u+ ℏi

2
− ℏ),

Ci(u) = s1...i−1,i+1
1...i (u+ ℏi

2
− ℏ), Di(u) = s1...i−1,i+1

1...i−1,i+1(u+ ℏi
2
− ℏ).

Then, by Proposition 6.1,

Bi(u) = Ai(u)bi(−u), Ci(u) = bi(u)Ai(u), zi(u) =
Ai+1(u+ 1

2
ℏ)Ai−1(u+ 1

2
ℏ)

Ai(u)Ai(u+ ℏ)
.

Note that Ai(u) satisfies Ai(−u) = Ai(u + ℏ). If we set Ãi(u) = Ai(u + 1
2
ℏ), then

Ãi(−u) = Ãi(u) and

(6.1) zi(u) =
Ãi+1(u)Ãi−1(u)

Ãi(u− 1
2
ℏ)Ãi(u+ 1

2
ℏ)

.

We will similarly denote X̃i(u) = Xi(u+ 1
2
ℏ) for X ∈ {B,C,D}.

Recall that the Sklyanin comatrix Ŝ(u) is defined by

Ŝ(u)S(u− n+ ℏ) = sdetS(u).

Lemma 6.2. The following entries of the Sklyanin comatrix are equal to the corre-
sponding Sklyanin minors:

ŝn−1,n−1(u) = s1...n−2,n
1...n−2,n(u), ŝn,n(u) = s1...n−1

1...n−1(u),

ŝn−1,n(u) = s1...n−2,n
1...n−1 (u), ŝn,n−1(u) = s1...n−1

1...n−2,n(u).

Proof. This is proven in the same way as [JZ24, Proposition 4.1]. □

Lemma 6.3 ([Mol07, Proposition 2.12.3]). The map

S(u) 7→ Ŝ(−u+ ℏn
2
− ℏ)

is an automorphism.

Let Ẋi(u) = Xi(−u+ 1
2
ℏ) for X ∈ {A,B,C,D}. Applying the two lemmas above, we

get the following analogue of [GKLO05, Proposition 2.1] and [NT94, Proposition 1.2].
Note that the list below is not necessarily exhaustive, i.e., we expect more relations are
needed to get a full presentation.
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Proposition 6.4. The following relations hold:

(u2 − v2)[Ȧi(u), Ḃi(v)] = ℏ(u+ v)(Ȧi(u)Ḃi(v)− Ȧi(v)Ḃi(u))

− ℏ(u− v)(Ȧi(u)Ḃi(v)− Ȧi(v)Ċi(u))

+ ℏ2(Ȧi(u)Ḃi(v)− Ȧi(v)Ḃi(u)),

(u2 − v2)[Ȧi(u), Ċi(v)] = ℏ(u+ v)(Ȧi(u)Ċi(v)− Ȧi(v)Ċi(u))

− ℏ(u− v)(Ȧi(u)Ċi(v)− Ȧi(v)Ḃi(u))

+ ℏ2(Ȧi(u)Ċi(v)− Ȧi(v)Ċi(u)),

(u2 − v2)[Ḃi(u), Ċi(v)] = ℏ(u+ v)(Ȧi(u)Ḋi(v)− Ȧi(v)Ḋi(u))

− ℏ(u− v)(Ḃi(u)Ċi(v)− Ċi(v)Ḃi(u))

− ℏ2(u+ v)−1(Ȧi(u)Ḋi(v)− Ȧi(v)Ḋi(u)),

Ȧi(−u) = Ȧi(u),

Ḃi(−u) = Ċi(u) + ℏ
Ċi(u)− Ċi(−u)

2u
,

Ċi(−u) = Ḃi(u) + ℏ
Ḃi(u)− Ḃi(−u)

2u
,

(u+ v)[Ċi(u), Ċi(v)] = ℏ
(
Ȧi(v)Ḋi(u)− Ȧi(u)Ḋi(v)

)
,

(u+ v)[Ḃi(u), Ḃi(v)] = ℏ
(
Ḋi(v)Ȧi(u)− Ḋi(u)Ȧi(v)

)
,

[Ȧi(u), Ȧi(v)] = 0.

Proof. This follows from Lemmas 6.2–6.3 and the RTT relations in the twisted Yangian
(see, e.g., [Mol07, Proposition 2.2.1]). □

7. Twisted GKLO representations

In [GKLO05], a remarkable family of representations of Yangians, quantizing moduli
spaces of monopoles, was introduced by Gerasimov, Kharchev, Lebedev and Oblezin.
Today they are commonly known as ‘GKLO representations’. They were later general-
ized to the cases of dominantly [KWWY14] and arbitrarily [BFN19] shifted Yangians.

Below we construct analogous representations for the shifted twisted Yangians twỸµ,ℏ.

7.1. Difference operators. Fix a dominant coweight λ ∈ X∗(T )
+ with µ ≤ λ, and

set mi = ω∨
i (λ− µ) and λi = α∨

i (λ). In other words,

λ =
n−1∑
i=1

λiωi, µ =
n−1∑
i=1

µiωi, λ− µ =
n−1∑
i=1

miαi.
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Note that, since µ ≤ λ, each mi is a non-negative integer. Moreover, we have the
identity

(7.1) λi − µi = 2mi −
∑
j∼i

mj,

where j ∼ i means that j and i are connected by an edge in the Dynkin diagram. Let
Dλ

µ,ℏ be the C[ℏ]-algebra generated by

• γi,k, β
±1
i,k (for i ∈ I and 1 ≤ k ≤ mi),

• ((γi,k + rℏ)2 − (γi,l + sℏ)2)−1, (for k ̸= l and r, s ∈ Z),
• (γi,k ± r

2
ℏ)−1 (for r ∈ Z),

subject to the relations

[β±1
i,k , γj,l] = ±δijδklℏβ±1

i,k , [γi,k, γj,l] = 0 = [βi,k, βj,l], β±1
i,k β

∓1
i,k = 1.

The algebra Dλ
µ,ℏ has a natural representation on the space

Polλµ,ℏ = C[ℏ][γi,k, ((γi,k + rℏ)2 − (γi,l + sℏ)2)−1, (γi,k +
r
2
ℏ)−1]r,s∈Zi∈I,1≤k ̸=l≤mi

,

where γi,k acts by multiplication and β±1
i,k acts by the difference operator e±ℏ∂γi,k . In

analogy to [KWWY14, Proposition 4.4], there is an isomorphism of Poisson algebras

Dλ
µ,ℏ/ℏDλ

µ,ℏ
∼= C[γi,k, β±1

i,k , ((γi,k + rℏ)2 − (γi,l + sℏ)2)−1, (γi,k ± r
2
ℏ)−1]r,s∈Zi∈I,1≤k ̸=l≤mi

,

where the only non-trivial Poisson bracket between the generators on the RHS is
{β±1

i,k , γi,k} = ±β±1
i,k .

7.2. Auxiliary relations. We begin by defining some auxiliary operators in Dλ
µ,ℏ and

describing the relations between them. Let us abbreviate ξi,k = γi,k + ℏ. Choose
polynomials

Ri(u) =

λi∏
k=1

(u2 − r2i,k) (i ∈ I),

where ri,k are arbitrary complex numbers. Define

κi,k =

∏mi+1

l=1 (γ2
i,k − (γi+1,l +

1
2
ℏ)2)

∏mi−1

l=1 (γi,k + γi−1,l +
1
2
ℏ)

2(γi,k − 1
2
ℏ)
∏

l ̸=k(γ
2
i,k − γ2

i,l)
β−1
i,k ∈ Dλ

µ,ℏ,(7.2)

κ′
i,k = Ri(ξi,k)

∏mi−1

l=1 (ξi,k − (γi−1,l +
1
2
ℏ))

2(γi,k +
3
2
ℏ)
∏

l ̸=k(ξ
2
i,k − ξ2i,l)

βi,k ∈ Dλ
µ,ℏ.(7.3)

The following lemma follows easily by direct calculation.
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Lemma 7.1. The following relations hold:

[κi,k, γj,l] = −ℏδijδklκi,k, [κ′
i,k, γj,l] = ℏδijδklκ′

i,k,(7.4)

[κi,k,κj,l] =
1
2
aijℏ

γi,k − γj,l
[κj,l,κi,k]+, [κ′

i,k,κ′
j,l] = [κ′

j,l,κ′
i,k]+

−1
2
aijℏ

γi,k − γj,l
,(7.5)

[κi,k,κ′
j,l] =

1
2
aijℏ

γi,k + γj,l + ℏ
[κi,k,κ′

j,l]+
(
(i, k) ̸= (j, l)

)
,(7.6)

κi,kκ′
i,k = Ri(γi,k)

∏
j=i±1

∏mj

l=1(γ
2
i,k − (γj,l +

1
2
ℏ)2)

4(γi,k − 1
2
ℏ)(γi,k + 1

2
ℏ)
∏

l ̸=k(γ
2
i,k − γ2

i,l)(γ
2
i,k − ξ2i,l)

,(7.7)

κ′
i,kκi,k = Ri(ξi,k)

∏
j=i±1

∏mj

l=1(ξ
2
i,k − (γj,l +

1
2
ℏ)2)

4(ξi,k − 1
2
ℏ)(ξi,k + 1

2
ℏ)
∏

l ̸=k(ξ
2
i,k − γ2

i,l)(ξ
2
i,k − ξ2i,l)

.(7.8)

Relations (7.5)–(7.6) can also be reformulated as

(γi,k − γj,l − 1
2
aijℏ)κi,kκj,l = (γi,k − γj,l +

1
2
aijℏ)κj,lκi,k,(7.9)

κ′
i,kκ′

j,l(γi,k − γj,l +
1
2
aijℏ) = κ′

j,lκ′
i,k(γi,k − γj,l − 1

2
aijℏ),(7.10)

(γi,k + γj,l + (1− 1
2
aij)ℏ)κi,kκ′

j,l = (γi,k + γj,l + (1 + 1
2
aij)ℏ)κ′

j,lκi,k.(7.11)

For later convenience, for i ̸= j, abbreviate

Sj,l
i,k =

4(γi,k − 1
2
ℏ)(γi,k + 1

2
ℏ)κi,kκ′

i,k

γ2
i,k − (γj,l +

1
2
ℏ)2

, T j,l
i,k =

4(ξi,k − 1
2
ℏ)(ξi,k + 1

2
ℏ)κ′

i,kκi,k

ξ2i,k − (ξj,l +
1
2
ℏ)2

.

7.3. Twisted GKLO homomorphism. Below we define an analogue of the GKLO
homomorphism for shifted twisted Yangians.

Theorem 7.2. The assignment

bi(u) 7→
mi∑
k=1

1

u− γi,k
κi,k +

1

u+ γi,k + ℏ
κ′

i,k,(7.12)

hi(u) 7→ u−4m1

i−1∏
j=1

Rj(u− i−1−j
2

ℏ)
∏mi

k=1(u
2 − (γi,k +

1
2
ℏ)2)∏mi−1

l=1 (u− γi−1,l)(u+ γi−1,l + ℏ)
(7.13)

defines a homomorphism Φλ
µ :

twỸµ,ℏ → Dλ
µ,ℏ.

We define the λ-truncated µ-shifted twisted Yangian twỸ λ
µ,ℏ to be the image of twỸµ,ℏ

under Φλ
µ. We refer to the pullback by Φλ

µ of the natural representation Polλµ,ℏ of Dλ
µ,ℏ

as a twisted GKLO representation. Restriction also yields representations of twYµ,ℏ and
twYµ. Let

twY λ
µ,ℏ (resp. twYλ

µ) denote the image of twYµ,ℏ (resp. twYµ) under Φ
λ
µ.
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7.4. Relations check. We prove Theorem 7.2 by explicitly checking that Φλ
µ preserves

the relations from Definition 5.1. Relations (5.2) and (5.4) are immediate.

7.4.1. Range of powers. We first check that the operators on the RHS of (7.12)–(7.13),
when expanded in u−1, have the correct range of powers. The RHS of (7.12) lies
in u−1Dλ

µ,ℏ[[u
−1]], matching bi(u). On the other hand, the RHS of (7.13) lies in

upDλ
µ,ℏ[[u

−1]], where

p = 2

(
i−1∑
j=1

λj +mi −mi−1

)
− 4m1 = −2m1 + 2

i∑
j=1

µj = −2ϵ∨i (µ),

by (7.1), and the coefficient at the top power is 1, which matches hi(u).

7.4.2. Relation (5.1). It follows directly from (7.13) that

zi(u) = (hi(u− 1
2
ℏ))−1hi+1(u) 7→ Ri(u)

∏
j=i±1

∏mj

k=1(u
2 − (γj,k +

1
2
ℏ)2)∏mi

k=1(u
2 − γ2

i,k)(u
2 − ξ2i,k)

.(7.14)

Since (7.14) involves only even powers of u, (5.1) follows.

7.4.3. Relation (5.3). Given (7.4), it suffices to prove (5.3) in the case where mj = 1,
λj = 0 and mj±1 = 0. Therefore, in this subsection we will omit the second subscript
on γ and κ.

First consider the case i = j. Let us calculate the LHS of (5.3):

hi(u)bi(v) =
(u2 − (γi +

1
2
ℏ)2)

(v − γi)
κi +

(u2 − (γi +
1
2
ℏ)2)

(v + γi + ℏ)
κ′

i,

bi(v)hi(u) =
(u2 − (γi − 1

2
ℏ)2)

(v − γi)
κi +

(u2 − (γi +
3
2
ℏ)2)

(v + γi + ℏ)
κ′

i,

[hi(u), bi(v)] =
−2ℏγi
(v − γi)

κi +
2ℏ(γi + ℏ)
(v + γi + ℏ)

κ′
i.

Next, we compute the RHS:

hi(u)(bi(v)− bi(−u− 1
2
ℏ)) =

(u2 − (γi +
1
2
ℏ)2)(u+ v + 1

2
ℏ)

(v − γi)(u+ γi +
1
2
ℏ)

κi

+
(u2 − (γi +

1
2
ℏ)2)(u+ v + 1

2
ℏ)

(v + γi + ℏ)(u− γi − 1
2
ℏ)

κ′
i,

(bi(v)− bi(u+ 1
2
ℏ))hi(u) =

(u2 − (γi − 1
2
ℏ)2)(u− v + 1

2
ℏ)

(v − γi)(u− γi +
1
2
ℏ)

κi

+
(u2 − (γi +

3
2
ℏ)2)(u− v + 1

2
ℏ)

(v + γi + ℏ)(u+ γi +
3
2
ℏ)

κ′
i.
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Hence

ℏhi(u)(bi(v)− bi(−u− 1
2
ℏ))

u+ v + 1
2
ℏ

−
ℏ(bi(v)− bi(u+ 1

2
ℏ))hi(u)

u− v + 1
2
ℏ

=
−2ℏγi
(v − γi)

κi +
2ℏ(γi + ℏ)
(v + γi + ℏ)

κ′
i,

as required.
Now consider the case i = j + 1. Let us calculate the LHS of (5.3):

hj+1(u)bj(v) =
1

(v − γj)(u− γj)(u+ γj + ℏ)
κj +

1

(v + γj + ℏ)(u− γj)(u+ γj + ℏ)
κ′

j,

bj(v)hj+1(u) =
1

(v − γj)(u− γj + ℏ)(u+ γj)
κj +

1

(v + γj + ℏ)(u− γj − ℏ)(u+ γj + 2ℏ)
κ′

j,

[hj+1(u), bj(v)] =
2ℏγj

(v − γj)(u2 − γ2
j )((u+ ℏ)2 − γ2

j )
κj

− 2ℏ(γj + ℏ)
(v + γj − ℏ)(u2 − (γj + ℏ)2)(u− γj)(u+ γj + 2ℏ)

κ′
j.

Next, we compute the RHS:

hj(u)
(
bj(v)− bj(−u)

)
=

u+ v

(v − γj)(u2 − γ2
j )(u+ γj + ℏ)

κj

+
u+ v

(v + γj + ℏ)(u− γj)(u2 − (γj + ℏ)2)
κ′

j,(
bj(v)− bj(u)

)
hj(u) =

u− v

(v − γj)(u2 − γ2
j )(u− γj + ℏ)

κj

+
u− v

(v + γj + ℏ)(u2 − (γj + ℏ)2)(u+ γj + 2ℏ)
κ′

j.

Hence

ℏ(bj(v)− bj(u))hj(u)

u− v
− ℏhj(u)(bj(v)− bj(−u))

u+ v
=

=
2ℏγj

(v − γj)(u2 − γ2
j )((u+ ℏ)2 − γ2

j )
κj −

2ℏ(γj + ℏ)
(v + γj − ℏ)(u2 − (γj + ℏ)2)(u− γj)(u+ γj + 2ℏ)

κ′
j,

as required.

7.4.4. Relation (5.5). We first calculate the LHS:

[bi(u), bi(v)] =
∑
k

ℏ(v − u)

(u− γi,k)(v − γi,k)(u− γi,k + ℏ)(v − γi,k + ℏ)
κ2

i,k

+
∑
k

ℏ(v − u)

(u+ γi,k + ℏ)(v + γi,k + ℏ)(u+ γi,k + 2ℏ)(v + γi,k + 2ℏ)
(κ′

i,k)
2
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+
∑
k ̸=l

(v − u)(γi,k − γi,l)

(u− γi,k)(v − γi,l)(v − γi,k)(u− γi,l)
κi,kκi,l

−
∑
k ̸=l

κ′
i,kκ′

i,l

(v − u)(γi,k − γi,l)

(u+ γi,k)(v + γi,l)(v + γi,k)(u+ γi,l)

+
∑
k ̸=l

(v − u)(γi,k + γi,l + ℏ)
(u− γi,k)(v − γi,k)(u+ γi,l + ℏ)(v + γi,l + ℏ)

[κi,k,κ′
i,l]

+
∑
k

2γi,k(v − u)

(u2 − γ2
i,k)(v

2 − γ2
i,k)

κi,kκ′
i,k

−
∑
k

2(γi,k + ℏ)(v − u)

(u2 − (γi,k + ℏ)2)(v2 − (γi,k + ℏ)2)
κ′

i,kκi,k.

Let us denote each of the seven summands above as X1, · · · , X7, counting from the
top.

We now pass to the RHS of (5.5):

bi(u)− bi(v) =
∑
k

v − u

(u− γi,k)(v − γi,k)
κi,k +

v − u

(u+ γi,k + ℏ)(v + γi,k + ℏ)
κ′

i,k,

(bi(u)− bi(v))
2 =

∑
k

(v − u)2

(u− γi,k)(v − γi,k)(u− γi,k + ℏ)(v − γi,k + ℏ)
κ2

i,k

+
∑
k

(v − u)2

(u+ γi,k + ℏ)(v + γi,k + ℏ)(u+ γi,k + 2ℏ)(v + γi,k + 2ℏ)
(κ′

i,k)
2

+
∑
k,l

(v − u)2

(u− γi,k)(v − γi,k)(u− γi,l)(v − γi,l)
κi,kκi,l

+
∑
k,l

κ′
i,kκ′

i,l

(v − u)2

(u+ γi,k)(v + γi,k)(u+ γi,k)(v + γi,k)

+
∑
k ̸=l

(v − u)2

(u− γi,k)(v − γi,k)(u+ γi,l + ℏ)(v + γi,l + ℏ)
[κi,k,κ′

i,l]+

+
∑
k

(v − u)2

(u2 − γ2
i,k)(v

2 − γ2
i,k)

κi,kκ′
i,k

+
∑
k

(v − u)2

(u2 − (γi,k + ℏ)2)(v2 − (γi,k + ℏ)2)
κ′

i,kκi,k.

Let us denote each of the seven summands above as Y1, · · · , Y7, counting from the top.
We see immediately that X1 = ℏ

v−u
Y1 and X2 = ℏ

v−u
Y2. Relations (7.5)–(7.6) also
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imply that X3 =
ℏ

v−u
Y3, X4 =

ℏ
v−u

Y4, and X5 =
ℏ

v−u
Y5. Therefore, to establish (5.5), it

suffices to show that∑
k

2(γi,k − 1
2
ℏ)(v2 − u2)

(u2 − γ2
i,k)(v

2 − γ2
i,k)

κi,kκ′
i,k −

∑
k

2(γi,k +
3
2
ℏ)(v2 − u2)

(u2 − ξ2i,k)(v
2 − ξ2i,k)

κ′
i,kκi,k =(7.15)

= ℏ(zi(v)− zi(−u)).

Let us first calculate the LHS of (7.15). Using relations (7.7)–(7.8), we get

LHS =
∑
k

(
1

u2 − γ2
i,k

− 1

v2 − γ2
i,k

)
Ri(γi,k)

∏
j=i±1

∏mj

l=1(γ
2
i,k − (γj,l +

1
2
ℏ)2)

2(γi,k +
1
2
ℏ)
∏

l ̸=k(γ
2
i,k − γ2

i,l)(γ
2
i,k − ξ2i,l)

(7.16)

+
∑
k

(
1

v2 − ξ2i,k
− 1

u2 − ξ2i,k

)
Ri(ξi,k)

∏
j=i±1

∏mj

l=1(ξ
2
i,k − (γj,l +

1
2
ℏ)2)

2(γi,k +
1
2
ℏ)
∏

l ̸=k(ξ
2
i,k − γ2

i,l)(ξ
2
i,k − ξ2i,l)

.

Next, we compute the RHS of (7.15). Applying partial fraction decomposition to the
denominator of (7.14), we get

−ℏzi(u) =
mi∑
k=1

Ri(u)
∏

j=i±1

∏mj

l=1(u
2 − (γj,l +

1
2
ℏ)2)

2(γi,k +
1
2
ℏ)
∏

l ̸=k(γ
2
i,k − γ2

i,l)(γ
2
i,k − ξ2i,l)

1

u2 − γ2
i,k

(7.17)

−
mi∑
k=1

Ri(u)
∏

j=i±1

∏mj

l=1(u
2 − (γj,l +

1
2
ℏ)2)

2(γi,k +
1
2
ℏ)
∏

l ̸=k(ξ
2
i,k − γ2

i,l)(ξ
2
i,k − ξ2i,l)

1

u2 − ξ2i,k
.

The result now follows by comparing the ‘u-part’ of (7.16) with the principal part of
(7.17), considered as Laurent series in u−2 (with analogous comparison for the ‘v-part’).

This follows from the fact that the principal parts of
p(γ2

i,k)

u2−γ2
i,k

and p(u2)

u2−γ2
i,k

coincide for

any polynomial p(·).

7.4.5. Relation (5.6). It suffices to prove (5.6) for mi = mi+1 = 1, so we drop the
second subscript on γ and κ. The LHS is:

(u− v)[bi(u), bi+1(v)] =
u− v

(u− γi)(v − γi+1)
[κi,κi+1] + [κ′

i,κ′
i+1]

u− v

(u+ γi)(v + γi+1)

+
u− v

(u− γi)(v + γi+1 + ℏ)
[κi,κ′

i+1]

+
u− v

(v − γi+1)(u+ γi + ℏ)
[κ′

i,κi+1].

On the other hand, on the RHS,

−1
2
ℏ[bi(u), bi+1(v)]+ =

−1
2
ℏ

(u− γi)(v − γi+1)
[κi,κi+1]+ + [κ′

i,κ′
i+1]+

−1
2
ℏ

(u+ γi)(v + γi+1)
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+
−1

2
ℏ

(u− γi)(v + γi+1 + ℏ)
[κi,κ′

i+1]+

+
−1

2
ℏ

(v − γi+1)(u+ γi + ℏ)
[κ′

i,κi+1]+,

and

[b
(0)
i , bi+1(v)] + [b

(0)
i+1, bi(u)] =

u− v + γi+1 − γi
(u− γi)(v − γi+1)

[κi,κi+1] + [κ′
i,κ′

i+1]
u− v − γi+1 + γi
(u+ γi)(v + γi+1)

+
u− v − γi − γi+1 − ℏ
(u− γi)(v + γi+1 + ℏ)

[κi,κ′
i+1]

+
u− v + γi + γi+1 + ℏ
(v − γi+1)(u+ γi + ℏ)

[κ′
i,κi+1].

The result is now implied by the identities

(γi+1 − γi)[κi,κi+1] =
1
2
ℏ[κi,κi+1]+, [κ′

i,κ′
i+1](γi − γi+1) =

1
2
ℏ[κ′

i,κ′
i+1]+,

(γi+1 + γi + ℏ)[κi,κ′
i+1] = −1

2
ℏ[κi,κ′

i+1]+, (γi+1 + γi + ℏ)[κ′
i,κi+1] =

1
2
ℏ[κi,κ′

i+1]+,

which follow from (7.5)–(7.6).

7.4.6. Relation (5.7). Without loss of generality, we may assume j = i + 1. Consider
the LHS of (5.7) as a (degree 3) noncommutative polynomial in κi,k,κ′

i,l,κi+1,m,κ′
i+1,n.

First, we show that the sum of monomials not containing both κi,k and κ′
i,k (with the

same second index) vanishes. Such monomials come in four different types:

(1) monomials containing κi,k,κi,l,κi+1,m or κ′
i,k,κ′

i,l,κ′
i+1,m (if k = l then the

associated variable occurs twice);

(2) monomials containing κi,k,κi,l,κ′
i+1,m or κ′

i,k,κ′
i,l,κi+1,m (k ̸= l);

(3) monomials containing κi,k with multiplicity 2 and κ′
i+1,m, or κ′

i,k with multi-
plicity 2 and κi+1,m;

(4) monomials containing κi,k,κ′
i,l (k ̸= l) and κi+1,m or κ′

i+1,m.

The vanishing of the sum of all monomials of type 1 follows directly from the argument
in the non-twisted case, i.e., [GKLO05, Lemma 3.1] or [BFN19, B(vi)]. For the other
cases, we will need the following lemma.

Lemma 7.3. The following identities hold:

[κi,k, [κi,k,κ′
i+1,m]] = 0,

[κi,k, [κi,l,κ′
i+1,m]] =

−ℏ2(γi,k + γi,l + 2γi+1,m + 2ℏ)
(γi,k + γj,m + ℏ

2
)(γi,l + γj,m + ℏ

2
)(γi,k − γi,l + ℏ)

κi,kκi,lκ′
i+1,m,
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[κi,k, [κ′
i,l,κi+1,m]] =

ℏ2(γi,l − γi,k + 2γi+1,m + ℏ)
(γi+1,m − γi,k +

ℏ
2
)(γi,l + γi,k + 2ℏ)(γi+1,m + γi,l +

3ℏ
2
)
κi,kκ′

i,lκi+1,m,

[κ′
i,k, [κi,l,κi+1,m]] =

−ℏ2(γi,k − γi,l + 2γi+1,m + ℏ)
(γi+1,m − γi,l +

ℏ
2
)(γi,l + γi,k)(γi+1,m + γi,k +

3ℏ
2
)
κ′

i,kκi,lκi+1,m,

for k ̸= l.

Proof. The lemma follows by direct calculation using (7.9)–(7.11). □

Since

Symu1,u2

[
1

u1 − γi,k
κi,k,

[
1

u2 − γi,k
κi,k,

1

t+ γi+1,m + ℏ
κ′

i+1,m

]]
=(7.18)

= Symu1,u2

1

(u1 − γi,k + ℏ)(u2 − γi,k)(t+ γi,k + ℏ)
[
κi,k,

[
κi,k,κ′

i+1,m

]]
,

the first formula of Lemma 7.3 implies that the sum of all monomials of type 3, con-
taining κi,k with multiplicity 2 and κ′

i+1,m, on the LHS of (5.7), vanishes. It is clear
that the other subcase, i.e., monomials of type 3 containing κ′

i,k with multiplicity 2
and κi+1,m, can be handled using an analogous argument.

In the other cases, a similar calculation to (7.18) also shows that one can ignore the
denominators, such as 1

u1−γp,s
, in front of κp,s,κ′

r,t. Let k ̸= l. Then κi,lκi,kκ′
i+1,m =

γi,k−γi,l−ℏ
γi,k−γi,l+ℏκi,kκi,lκ′

i+1,m, and the second formula of Lemma 7.3 implies that

[κi,k, [κi,l,κ′
i+1,m]] + [κi,l, [κi,k,κ′

i+1,m]] = 0. Hence the sum of all monomials of type 2
on the LHS of (5.7) vanishes.

Again, let k ̸= l. Then κ′
i,lκi,kκi+1,m =

γi,k+γi,l
γi,k+γi,l+2ℏκi,kκ′

i,lκi+1,m, and the third and

fourth formulae of Lemma 7.3 imply that [κi,k, [κ′
i,l,κi+1,m]] + [κ′

i,l, [κi,k,κi+1,m]] = 0.
It follows that the sum of all monomials of type 4 on the LHS of (5.7) also vanishes.

We will now prove that the sum of the remaining monomials equals the RHS of (5.7).
We will need the following lemma.

Lemma 7.4. The following identities hold:

κi,kκ′
i,kκi+1,l − 2κi,kκi+1,lκ′

i,k + κi+1,lκi,kκ′
i,k =

1
2
ℏSi+1,l

i,k

γi,k +
1
2
ℏ
κi+1,l,

κ′
i,kκi,kκi+1,l − 2κ′

i,kκi+1,lκi,k + κi+1,lκ′
i,kκi,k =

1
2
ℏT i+1,l

i,k

γi,k +
1
2
ℏ
κi+1,l,

κi,kκ′
i,kκ′

i+1,l − 2κi,kκ′
i+1,lκ′

i,k + κ′
i+1,lκi,kκ′

i,k =
1
2
ℏSi+1,l

i,k

γi,k +
1
2
ℏ
κ′

i+1,l,

κ′
i,kκi,kκ′

i+1,l − 2κ′
i,kκ′

i+1,lκi,k + κ′
i+1,lκ′

i,kκi,k =
1
2
ℏT i+1,l

i,k

γi,k +
1
2
ℏ
κ′

i+1,l.
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Proof. We have

κi,kκ′
i,kκi+1,l =

γ2
i,k − (γi+1,l +

1
2
ℏ)2

4(γi,k − 1
2
ℏ)(γi,k + 1

2
ℏ)

Si+1,l
i,k κi+1,l,

κi,kκi+1,lκ′
i,k =

(γi,k − 1
2
ℏ)2 − γ2

i+1,l

4(γi,k − 1
2
ℏ)(γi,k + 1

2
ℏ)

Si+1,l
i,k κi+1,l,

κi+1,lκi,kκ′
i,k =

γ2
i,k − (γi+1,l − 1

2
ℏ)2

4(γi,k − 1
2
ℏ)(γi,k + 1

2
ℏ)

Si+1,l
i,k κi+1,l.

The first identity of the lemma now follows from the fact that(
γ2
i,k − (γi+1,l +

1
2
ℏ)2
)
− 2
(
(γi,k − 1

2
ℏ)2 − γ2

i+1,l

)
+
(
γ2
i,k − (γi+1,l − 1

2
ℏ)2
)
= 2ℏ(γi,k − 1

2
ℏ).

An analogous argument establishes the other identities. □

Lemma 7.4 implies that the LHS of (5.7) is equal to

LHS =
∑

u=u1,u2

(∑
k,l

ℏuSi+1,l
i,k

(u2 − γ2
i,k)(γi,k +

1
2
ℏ)

bli+1(t) +
∑
k,l

ℏuT i+1,l
i,k

(u2 − ξ2i,k)(γi,k +
1
2
ℏ)

bli+1(t)

)
,

where

bli+1(t) =
1

t− γi+1,l

κi+1,l +
1

t+ γi+1,l + ℏ
κ′

i+1,l.

On the other hand, using (7.14), and the fact that

((t− ℏ) zi(u)κi+1,l − (t+ ℏ)κi+1,lzi(u)) =

=
ℏ
(
(−2u2 + 1

2
ℏ2) + 2γi+1,l(γi+1,l − t)

)
u2 − (γi+1,l +

1
2
ℏ)2

zi(u)κi+1,l,(
(t− ℏ) zi(u)κ′

i+1,l − (t+ ℏ)κ′
i+1,lzi(u)

)
=

=
ℏ
(
(−2u2 + 1

2
ℏ2) + 2ξi+1,l(ξi+1,l + t)

)
u2 − (γi+1,l +

1
2
ℏ)2

zi(u)κ′
i+1,l,

we conclude that

(t− ℏ) zi(u)bi+1(t)− (t+ ℏ) bi+1(t)zi(u)

4u2 − ℏ2
=t

=t −
∑
l

Ri(u)

∏mi−1

p=1 (u2 − (γi−1,p +
1
2
ℏ)2)

∏mi+1

l ̸=p=1(u
2 − (γi+1,k +

1
2
ℏ)2)

2
∏mi

k=1(u
2 − γ2

i,k)(u
2 − ξ2i,k)

bli+1(t),

where =t denotes the equality of t-principal parts. A partial fraction decomposition
argument, analogous to §7.4.4, completes the proof of (5.7). This also concludes the
proof of Theorem 7.2.
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7.5. Symmetrized representation. Our definition of the operators (7.2)–(7.3) is
obviously asymmetric. This asymmetry can be resolved at the cost of working in
a certain quadratic extension of Dλ

µ,ℏ. More precisely, let D̆λ
µ,ℏ be the C[ℏ]-algebra

generated by

• γi,k, β
±1
i,k (for i ∈ I and 1 ≤ k ≤ mi),

• ((γi,k + rℏ)2 − (γi,l + sℏ)2)−1, (for k ̸= l and r, s ∈ Z),
• (γi,k ± r

2
ℏ)−1 (for r ∈ Z),

• (γi,k − γi±1,l +
r
2
ℏ) 1

2 and (γi,k + γi±1,l +
r
2
ℏ) 1

2 , (for r ∈ Z),
subject to the relations

[β±1
i,k , γj,l] = ±δijδklℏβ±1

i,k , [γi,k, γj,l] = 0 = [βi,k, βj,l], β±1
i,k β

∓1
i,k = 1.

Let us fix a root
√
−1 of −1. In the definition above, we choose the roots consistently,

so that, e.g.,

(γi,k − γi+1,l)
1
2 =

√
−1(γi+1,l − γi,k)

1
2 .

Then we can define

κ̆i,k = (Ri(γi,k))
1
2

∏
j∈{i±1}

∏mi−1

l=1 (γ2
i,k − (γj,l +

1
2
ℏ)2) 1

2

2(γi,k − 1
2
ℏ)
∏

l ̸=k(γ
2
i,k − γ2

i,l)
β−1
i,k ∈ D̆λ

µ,ℏ,

κ̆′
i,k = (Ri(ξi,k))

1
2

∏
j∈{i±1}

∏mi−1

l=1 (ξ2i,k − (γj,l +
1
2
ℏ)2) 1

2

2(γi,k +
3
2
ℏ)
∏

l ̸=k(ξ
2
i,k − ξ2i,l)

βi,k ∈ D̆λ
µ,ℏ.

One easily checks that Lemma 7.1 still holds if we replace κi,k ↔ κ̆i,k and κ′
i,k ↔ κ̆′

i,k. In
particular, carrying out appropriate modifications throughout §7.4, we get the following
version of Theorem 7.2.

Corollary 7.5. The assignment

bi(u) 7→
mi∑
k=1

1

u− γi,k
κ̆i,k +

1

u+ γi,k + ℏ
κ̆′

i,k,

hi(u) 7→ u−4m1

i−1∏
j=1

Rj(u− i−1−j
2

ℏ)
∏mi

k=1(u
2 − (γi,k +

1
2
ℏ)2)∏mi−1

l=1 (u− γi−1,l)(u+ γi−1,l + ℏ)

defines a homomorphism Φ̆λ
µ :

twỸµ,ℏ → D̆λ
µ,ℏ.

Remark 7.6. The symmetric formulation with square roots is somewhat more natural
from the point of view of Gelfand–Tsetlin theory, see, e.g., [GK91] and [LP25, Theorems
4.3, 6.1].
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7.6. ABCD formulation. Throughout this subsection, let µ = 0. With a view to
geometric applications, it is convenient to reformulate the twisted GKLO representa-
tions in terms of the ABCD presentation from §6.

Corollary 7.7. The twisted GKLO homomorphism Φλ
0 :

twỸ0,ℏ → Dλ
0,ℏ is uniquely de-

termined by the following formulae:

Ãi(u) 7→ u−2mi

mi∏
k=1

(u2 − (γi,k +
1
2
ℏ)2),

B̃i(u) 7→ −u−2mi

mi∑
k=1

mi∏
k ̸=l=1

(u2 − (γi,l +
1
2
ℏ)2)

(
(u− γi,k − 1

2
ℏ)κi,k + (u+ γi,k +

1
2
ℏ)κ′

i,k

)
,

C̃i(u) 7→ u−2mi

mi∑
k=1

(
κi,k(u− γi,k − 1

2
ℏ) + κ′

i,k(u+ γi,k +
1
2
ℏ)
) mi∏

k ̸=l=1

(u2 − (γi,l +
1
2
ℏ)2).

The symmetrized twisted GKLO homomorphism Φ̆λ
0 :

twỸ0,ℏ → D̆λ
0,ℏ is given by the same

formulae, with replacements κi,k ↔ κ̆i,k and κ′
i,k ↔ κ̆′

i,k.

Proof. This follows directly from Theorem 7.2, Corollary 7.5, as well as comparing
formulae (6.1) and (7.14) (the former needs to be twisted by the action of the central
element c(u) 7→ u−2λiRi(u) from (5.8)). The normalizing factor u−2mi is used to ensure

Ãi(u) is a series of the form Ãi(u) =
∑

k≥0A
(k)
i u−k. □

We can now, at least partially, characterize the kernel of the twisted GKLO homo-
morphism.

Corollary 7.8. The following elements are in the kernel of Φλ
0 :

• Ã
(r)
i , B̃

(r)
i , C̃

(r)
i for r > 2mi.

Proof. The statement is immediate from Corollary 7.7. □

8. Geometric realisations

Here we show that the shifted twisted Yangians from Section 5 and their truncations
defined in Section 7 quantise the Poisson structures discussed in Section 3.

8.1. Quantisations via RTT generators. It follows from the discussion in Sec-

tion 5.4 that twY0/ℏtwY0 is generated as a C-algebra by elements s
(r)
ij with 1 ≤ i, j ≤ n

and r ≥ 1 subject to relations s
(r)
ij = s

(r)
ji (−1)r. If sij(z) :=

∑
r≥0 s

(r)
ij z

−r for

s
(0)
ij :=

{
1 i = j

0 otherwise
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then the Poisson bracket on twY0/ℏtwY0 induced as in Section 2.3 is described by

(8.1)
(u2 − v2){sij(u), skl(v)} =(u+ v) (skj(u)sil(v)− sil(u)skj(v))

− (u− v) (sik(u)sjl(v)− slj(u)ski(v))

for variables u, v.

Proposition 8.1. The map of C-algebras
twY0/ℏtwY0 −→ O(K0\Gr0)

given by s
(r)
ij 7→ ∆

τ,(r)
ji (recall Notation 3.10) is a Poisson isomorphism.

Proof. Clearly the given map is an isomorphism of commutative rings. Recall from
Section 3 that {−,−} denotes the Poisson bracket on G0, while {−,−}τ denotes the
Poisson bracket on O(K0\G0) obtained via Ψ from the Dirac reduction of {−,−} on
Gτ=1
0 . Lemma 3.1 and (3.3) then combine to give

(u2 − v2){∆τ
ij(u),∆

τ
kl(v)}τ =(u2 − v2){∆ij(u),∆kl(v)} ◦Ψ

+(u2 − v2){∆ji(−u),∆kl(v)} ◦Ψ
=(u+ v)

(
∆τ

il(u)∆
τ
kj(v)−∆τ

kj(u)∆
τ
il(v)

)
−(u− v)

(
∆τ

jl(−u)∆τ
ki(v)−∆τ

ki(−u)∆τ
jl(v)

)
=(u+ v)

(
∆τ

il(u)∆
τ
kj(v)−∆τ

kj(u)∆
τ
il(v)

)
−(u− v)

(
∆τ

lj(u)∆
τ
ki(v)−∆τ

ik(u)∆
τ
jl(v)

)
Comparing with (8.1) shows that s

(r)
ij 7→ ∆

(r)
ij as anti Poisson (i.e. maps the bracket on

twY0/ℏtwY0 onto −1 times the bracket on O(K0\G0)). Since the association s
(r)
ij 7→ s

(r)
ji

is an anti-automorphism of twY0, see [Mol07, Proposition 2.3.4], the claim follows. □

Remark 8.2. The existence of the isomorphism in Proposition 8.3 can also understood
conceptually from the viewpoint of [KWWY14]. Specifically, [KWWY14, Theorem 3.9]
produces a Poisson isomorphism ϕ : O(Gr0) → Y0/ℏY0 where Y0 denotes the C[ℏ]
form of the sln Yangian. This isomorphism identifies the universal matrix on Gr0 ∼= G0

with the transpose of the matrix T (z) ∈ Mat(Y0/ℏY0)[[z
−1]] of RTT generators. As a

consequence, the isomorphism from Proposition 8.1 fits into the following commutative
diagram

O(K0\Gr0) O(Gr0)

twY0/ℏtwY0 Y0/ℏY0

in which the lower horizontal embedding identifies twY0/ℏtwY0 with the subalgebra of
Y0/ℏY0 generated over C by the coefficients of the entries inside T (z)T t(−z) [Mol07,
Theorem 2.4.3].
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8.2. Quantisations in the shifted setting.

Proposition 8.3. Let µ ∈ X∗(T ) be dominant and recall the shift homomorphism
twι(µ) : twYµ → twY0. Then there is a commutative diagram of graded Poisson C-
algebras

O(K0\G0/U−,µ) O(K0\G0)

twYµ/ℏtwYµ
twY0/ℏtwY0

≀ ≀
twι(µ)

whose right vertical arrow is the isomorphism in Proposition 8.3.

Proof. The image of twYµ/ℏtwYµ inside twY0/ℏtwY0 under the shift homomorphism is

Poisson generated by the images modulo ℏ of the element ℏb(r)i ∈ twY0 for r > ⟨α∨
i , µ⟩

and the ℏz(r)i ∈ twY0 for r > 0 . On the other hand, Proposition 6.1 implies that the
isomorphism in Proposition 8.3 identifies the series

ℏzi(u) =
Ai−1(u)Ai+1(u)

Ai(u)2
, ℏbi(u) = Bi(u)Ai(u)

for Ai(u) =
∑

r≥0A
(r)
i u−r, Bi(u) =

∑
r>0B

(r)
i u−r and A

(r)
i , B

(r)
i as defined in Sec-

tion 3.4. It is easy to see that each coefficient in Ai(u) lies inside the subring
O(K0\G0/U−,µ) since the trailing principal minor of any g ∈ G is invariant under
left multiplication by U+ and right multiplication by U−. On the other hand, if
K0x ∈ K0\G0 then bi(K0x) is the i, i + 1-th entry of the matrix f ∈ U−

0 obtained
by factoring τ(x)x = edf as in (2.1). It is easy to see that the coefficients in this
series of degree < ⟨α∨

i , µ⟩ are invariant under the right action of U−,µ. We conclude
that, under the identification of Proposition 8.3, the image of twYµ/ℏtwYµ lies inside
O(K0\G0/U−,µ).

It remains to show this inclusion is an equality. For this it suffices to observe that
both have Hilbert series for the loop grading given by ∏

α∨∈∆+

∞∏
q>⟨α∨,µ⟩

1

(1− tq)

( ∞∏
j=1

1

(1− t2j)n−1

)
.

For O(K0\G0/U−,µ) this is easily seen using the isomorphism

K0\G0/U−,µ ∼=
(
U+
−µ × T0 × U−

µ

)τ=1

in (3.2), while for twYµ/ℏtwYµ, it follows from the description of the PBW basis in
Proposition 5.3. □
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8.3. Quantisations of truncations. Here we take µ = 0 and consider λ ∈ X∗(T )
+.

Then Theorem 7.2 produces a surjection twY0 → twYλ
0 , and hence a surjection

twY0/ℏtwY0 → twYλ
0/ℏtwYλ

0 .

Theorem 8.4. There is a commutative diagram

twY0/ℏtwY0 O(K0\G0)

twYλ
0/ℏtwYλ

0 O(S≤−w0(2λ)
0 )

Prop 8.3

whose bottom horizontal arrow is an isomorphism modulo the ideal of nilpotent elements
in twYλ

0/ℏtwYλ
0 .

Proof. Write I for the Poisson ideal obtained as the kernel of the surjectionO(K0\G0) ∼=
twY0/ℏtwY0 → twYλ

0/ℏtwYλ
0 . From Corollary 7.8 we see that

Ψλ
0(A

(r)
i ) = 0

for r > mi := ⟨ωi, 2λ⟩. Since mi = ⟨ωi,−w0(−w0(2λ)⟩ it follows that I contains the
ideal described in Corollary 3.13 when applied to the dominant coweight −w0(2λ).

Thus, the vanishing locus V (I) ⊂ K0\G0 of I is contained in S≤−w0(2λ)
0 . If this contain-

ment were strict then I could not contain any A
(mi)
i . Indeed, Proposition 3.11 asserts

that these functions are units in O(S≤−w0(2λ)
0 ). However, it is clear from Corollary 7.7

that Ψλ
0(A

(mi)
i ) ̸= 0, so we are done. □

Theorem 8.5. Suppose that Conjecture 3.14. Then:

(1) The bottom horizontal arrow in Theorem 8.4 is an isomorphism.

(2) twYλ
0 is the quotient of twY0 by the two sided ideal generated by the ℏA(r)

i ’s for

r > ri = ⟨ωi, 2λ⟩ and the ℏB(ri+1)
i for each 1 ≤ i ≤ n− 1.

Proof. The argument is identical to that proving [KWWY14, Theorem 4.10]. Let
K ⊂ twY0 denote the two sided ideal described in the theorem. Then

K/ℏK ⊂ I ⊂ Jλ
0

for Jλ
0 the ideal defining S≤−w0(2λ)

0 and I the kernel of twY0/ℏtwY0 → O(S≤−w0(2λ)
0 ).

On the other hand, the proof of Theorem 8.4 goes through with I replaced by K/ℏK
since Corollary 7.8 clearly shows that

Ψλ
0(B

(r)
i ) = 0

for r > ⟨ωi, 2λ⟩. Thus, K/ℏK has radical equal to Jλ
0 . But Conjecture 3.14 asserts

that K/ℏK is already reduced, and hence K/ℏK = I = Jλ
0 which gives part (1). Part

(2) then follows from an application of Nakayama’s lemma. □
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